TY - JOUR A1 - Meyer, Till Jasper A1 - Stöth, Manuel A1 - Moratin, Helena A1 - Ickrath, Pascal A1 - Herrmann, Marietta A1 - Kleinsasser, Norbert A1 - Hagen, Rudolf A1 - Hackenberg, Stephan A1 - Scherzad, Agmal T1 - Cultivation of head and neck squamous cell carcinoma cells with wound fluid leads to cisplatin resistance via epithelial-mesenchymal transition induction JF - International Journal of Molecular Sciences N2 - Locoregional recurrence is a major reason for therapy failure after surgical resection of head and neck squamous cell carcinoma (HNSCC). The physiological process of postoperative wound healing could potentially support the proliferation of remaining tumor cells. The aim of this study was to evaluate the influence of wound fluid (WF) on the cell cycle distribution and a potential induction of epithelial-mesenchymal transition (EMT). To verify this hypothesis, we incubated FaDu and HLaC78 cells with postoperative WF from patients after neck dissection. Cell viability in dependence of WF concentration and cisplatin was measured by flow cytometry. Cell cycle analysis was performed by flow cytometry and EMT-marker expression by rtPCR. WF showed high concentrations of interleukin (IL)-6, IL-8, IL-10, CCL2, MCP-1, EGF, angiogenin, and leptin. The cultivation of tumor cells with WF resulted in a significant increase in cell proliferation without affecting the cell cycle. In addition, there was a significant enhancement of the mesenchymal markers Snail 2 and vimentin, while the expression of the epithelial marker E-cadherin was significantly decreased. After cisplatin treatment, tumor cells incubated with WF showed a significantly higher resistance compared with the control group. The effect of cisplatin-resistance was dependent on the WF concentration. In summary, proinflammatory cytokines are predominantly found in WF. Furthermore, the results suggest that EMT can be induced by WF, which could be a possible mechanism for cisplatin resistance. KW - cell proliferation KW - wound fluid KW - epithelial-mesenchymal transition KW - cisplatin resistance KW - Interleukin KW - head and neck squamous cell carcinoma Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258722 SN - 1422-0067 VL - 22 IS - 9 ER - TY - JOUR A1 - Scherzad, Agmal A1 - Hagen, Rudolf A1 - Hackenberg, Stephan T1 - Current Understanding of Nasal Epithelial Cell Mis-Differentiation JF - Journal of Inflammation Research N2 - The functional role of the respiratory epithelium is to generate a physical barrier. In addition, the epithelium supports the innate and acquired immune system through various cytokines and chemokines. However, epithelial cells are also involved in the pathogenesis of various respiratory diseases, some of which are mediated by increased permeability of the mucosal membrane or disturbed mucociliary transport. In addition, it has been shown that epithelial cells are involved in the development of inflammatory respiratory diseases. The following review article focuses on the aspects of epithelial mis-differentiation, in particular with respect to nasal mucosal barrier function, epithelial immunogenicity, nasal epithelial-mesenchymal transition and nasal microbiome. KW - nasal mucosal barrier function KW - tight junction KW - epithelial-mesenchymal transition KW - microbiome Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228562 VL - 12 ER -