TY - JOUR A1 - Krieger, Frank A1 - Metzger, Friedrich A1 - Jablonka, Sibylle T1 - Differentiation defects in primary motoneurons from a SMARD1 mouse model that are insensitive to treatment with low dose PEGylated IGF1 JF - Rare Diseases N2 - Muscle atrophy and diaphragmatic palsy are the clinical characteristics of spinal muscular atrophy with respiratory distress type 1 (SMARD1), and are well represented in the neuromuscular degeneration \((Nmd^{2J})\) mouse, modeling the juvenile form of SMARD1. Both in humans and mice mutations in the IGHMBP2 gene lead to motoneuron degeneration. We could previously demonstrate that treatment with a polyethylene glycol-coupled variant of IGF1 (PEG-IGF1) improves motor functions accompanied by reduced fiber degeneration in the gastrocnemius muscle and the diaphragm, but has no beneficial effect on motoneuron survival. These data raised the question which cell autonomous disease mechanisms contribute to dysfunction and loss of Ighmbp2-deficient motoneurons. An analysis of primary Ighmbp2-deficient motoneurons exhibited differentiation deficits such as reduced spontaneous \(Ca^{2+}\) transients and altered axon elongation, which was not compensated by PEG-IGF1. This points to an IGF1 independent mechanism of motoneuron degeneration that deserves treatment approaches in addition to IGF1. KW - SMARD1 KW - motoneurons KW - Ighmbp2 KW - IGF1 KW - Cav2.2 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120610 SN - 2167-5511 VL - 2 IS - e29415 ER - TY - JOUR A1 - Wetzel, Andrea A1 - Jablonka, Sibylle A1 - Blum, Robert T1 - Cell-autonomous axon growth of young motoneurons is triggered by a voltage-gated sodium channel JF - Channels (Austin) N2 - Spontaneous electrical activity preceding synapse formation contributes to the precise regulation of neuronal development. Examining the origins of spontaneous activity revealed roles for neurotransmitters that depolarize neurons and activate ion channels. Recently, we identified a new molecular mechanism underlying fluctuations in spontaneous neuronal excitability. We found that embryonic motoneurons with a genetic loss of the low-threshold sodium channel Na\(_V\)1.9 show fewer fluctuations in intracellular calcium in axonal compartments and growth cones than wild-type littermates. As a consequence, axon growth of Na\(_V\)1.9-deficient motoneurons in cell culture is drastically reduced while dendritic growth and cell survival are not affected. Interestingly, Na\(_V\)1.9 function is observed under conditions that would hardly allow a ligand- or neurotransmitter-dependent depolarization. Thus, Na\(_V\)1.9 may serve as a cell-autonomous trigger for neuronal excitation. In this addendum, we discuss a model for the interplay between cell-autonomous local neuronal activity and local cytoskeleton dynamics in growth cone function. KW - spontaneous excitation KW - spinal muscular atrophy KW - axon growth KW - sodium channel KW - motoneurons KW - local protein synthesis KW - NaV1.9 Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132586 VL - 7 IS - 1 ER -