TY - JOUR A1 - Kredel, Markus A1 - Kunzmann, Steffen A1 - Schlegel, Paul-Gerhardt A1 - Wölfl, Matthias A1 - Nordbeck, Peter A1 - Bühler, Christoph A1 - Lotz, Christopher A1 - Lepper, Philipp M. A1 - Wirbelauer, Johannes A1 - Roewer, Norbert A1 - Muellenbach, Ralf M. T1 - Double Peripheral Venous and Arterial Cannulation for Extracorporeal Membrane Oxygenation in Combined Septic and Cardiogenic Shock JF - American Journal of Case Reports N2 - Background: The use of venoarterial extracorporeal membrane oxygenation (va-ECMO) via peripheral cannulation for septic shock is limited by blood flow and increased afterload for the left ventricle. Case Report: A 15-year-old girl with acute myelogenous leukemia, suffering from severe septic and cardiogenic shock, was treated by venoarterial extracorporeal membrane oxygenation (va-ECMO). Sufficient extracorporeal blood flow matching the required oxygen demand could only be achieved by peripheral cannulation of both femoral arteries. Venous drainage was performed with a bicaval cannula inserted via the left V. femoralis. To accomplish left ventricular unloading, an additional drainage cannula was placed in the left atrium via percutaneous atrioseptostomy (va-va-ECMO). Cardiac function recovered and the girl was weaned from the ECMO on day 6. Successful allogenic stem cell transplantation took place 2 months later. Conclusions: In patients with vasoplegic septic shock and impaired cardiac contractility, double peripheral venoarterial extracorporeal membrane oxygenation (va-va-ECMO) with transseptal left atrial venting can by a lifesaving option. KW - extracorporeal membrane oxygenation KW - myeloid KW - leukemia KW - acute KW - shock KW - cardiogenic KW - septic Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158193 VL - 18 ER - TY - JOUR A1 - Shityakov, Sergey A1 - Roewer, Norbert A1 - Förster, Carola A1 - Broscheit, Jens-Albert T1 - In silico modeling of indigo and Tyrian purple single-electron nano-transistors using density functional theory approach JF - Nanoscale Research Letters N2 - The purpose of this study was to develop and implement an in silico model of indigoid-based single-electron transistor (SET) nanodevices, which consist of indigoid molecules from natural dye weakly coupled to gold electrodes that function in a Coulomb blockade regime. The electronic properties of the indigoid molecules were investigated using the optimized density-functional theory (DFT) with a continuum model. Higher electron transport characteristics were determined for Tyrian purple, consistent with experimentally derived data. Overall, these results can be used to correctly predict and emphasize the electron transport functions of organic SETs, demonstrating their potential for sustainable nanoelectronics comprising the biodegradable and biocompatible materials. KW - density functional theory KW - indigo KW - Tyrian purple KW - single-electron transistor Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158332 VL - 12 IS - 439 ER -