TY - JOUR A1 - Wabnitz, Katharina A1 - Schwienhorst-Stich, Eva-Maria A1 - Asbeck, Franziska A1 - Fellmann, Cara Sophie A1 - Gepp, Sophie A1 - Leberl, Jana A1 - Mezger, Nikolaus Christian Simon A1 - Eichinger, Michael T1 - National Planetary Health learning objectives for Germany: A steppingstone for medical education to promote transformative change JF - Frontiers in Public Health N2 - Physicians play an important role in adapting to and mitigating the adverse health effects of the unfolding climate and ecological crises. To fully harness this potential, future physicians need to acquire knowledge, values, skills, and leadership attributes to care for patients presenting with environmental change-related conditions and to initiate and propel transformative change in healthcare and other sectors of society including, but not limited to, the decarbonization of healthcare systems, the transition to renewable energies and the transformation of transport and food systems. Despite the potential of Planetary Health Education (PHE) to support medical students in becoming agents of change, best-practice examples of mainstreaming PHE in medical curricula remain scarce both in Germany and internationally. The process of revising and updating the Medical Licensing Regulations and the National Competency-based Catalog of Learning Objectives for Medical Education in Germany provided a window of opportunity to address this implementation challenge. In this article, we describe the development and content of national Planetary Health learning objectives for Germany. We anticipate that the learning objectives will stimulate the development and implementation of innovative Planetary Health teaching, learning and exam formats in medical schools and inform similar initiatives in other health professions. The availability of Planetary Health learning objectives in other countries will provide opportunities for cross-country and interdisciplinary exchange of experiences and validation of content, thus supporting the consolidation of Planetary Health learning objectives and the improvement of PHE for all health professionals globally. KW - climate change KW - curriculum development KW - education for sustainable healthcare KW - medical education KW - Planetary Health KW - Planetary Health Education KW - transformative education Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-306027 SN - 2296-2565 VL - 10 ER - TY - JOUR A1 - Simon, Johanna A1 - Parisi, Sandra A1 - Wabnitz, Katharina A1 - Simmenroth, Anne A1 - Schwienhorst-Stich, Eva-Maria T1 - Ten characteristics of high-quality planetary health education BT - results from a qualitative study with educators, students as educators and study deans at medical schools in Germany JF - Frontiers in Public Health N2 - Aim: The climate and ecological crises are considered fundamental threats to human health. Healthcare workers in general and doctors in particular can contribute as change agents in mitigation and adaptation. Planetary health education (PHE) aims to harness this potential. This study explores perspectives among stakeholders involved in PHE at German medical schools on the characteristics of high-quality PHE and compares them to existing PHE frameworks. Methods: In 2021, we conducted a qualitative interview study with stakeholders from German medical schools involved in PHE. Three different groups were eligible: faculty members, medical students actively involved in PHE, and study deans of medical schools. Recruitment was performed through national PHE networks and snowball sampling. Thematic qualitative text analysis according to Kuckartz was used for the analysis. Results were systematically compared to three existing PHE frameworks. Results: A total of 20 participants (13 female) from 15 different medical schools were interviewed. Participants covered a wide range of professional backgrounds and experience in PHE education. The analysis revealed ten key themes: (1) Complexity and systems thinking, (2) inter- and transdisciplinarity, (3) ethical dimension, (4) responsibility of health professionals, (5) transformative competencies including practical skills, (6) space for reflection and resilience building, (7) special role of students, (8) need for curricular integration, (9) innovative and proven didactic methods, and (10) education as a driver of innovation. Six of our themes showed substantial overlap with existing PHE frameworks. Two of our themes were only mentioned in one of the frameworks, and two others were not explicitly mentioned. Few important elements of the frameworks did not emerge from our data. Conclusions: In the light of increased attention regarding the connections of the climate and ecological crises and health, our results can be useful for anyone working toward the integration of planetary health into medical schools' and any health professions' curricula and should be considered when designing and implementing new educational activities. KW - climate change KW - climate resilience KW - planetary health KW - planetary health education KW - medical education KW - transformative education KW - education for sustainable healthcare KW - eco health Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313856 SN - 2296-2565 VL - 11 ER - TY - JOUR A1 - Reiners, Philipp A1 - Sobrino, José A1 - Kuenzer, Claudia T1 - Satellite-derived land surface temperature dynamics in the context of global change — a review JF - Remote Sensing N2 - Satellite-derived Land Surface Temperature (LST) dynamics have been increasingly used to study various geophysical processes. This review provides an extensive overview of the applications of LST in the context of global change. By filtering a selection of relevant keywords, a total of 164 articles from 14 international journals published during the last two decades were analyzed based on study location, research topic, applied sensor, spatio-temporal resolution and scale and employed analysis methods. It was revealed that China and the USA were the most studied countries and those that had the most first author affiliations. The most prominent research topic was the Surface Urban Heat Island (SUHI), while the research topics related to climate change were underrepresented. MODIS was by far the most used sensor system, followed by Landsat. A relatively small number of studies analyzed LST dynamics on a global or continental scale. The extensive use of MODIS highly determined the study periods: A majority of the studies started around the year 2000 and thus had a study period shorter than 25 years. The following suggestions were made to increase the utilization of LST time series in climate research: The prolongation of the time series by, e.g., using AVHRR LST, the better representation of LST under clouds, the comparison of LST to traditional climate change measures, such as air temperature and reanalysis variables, and the extension of the validation to heterogenous sites. KW - remote sensing KW - land surface temperature KW - temperature KW - dynamics KW - global change KW - climate change KW - global warming KW - earth observation KW - review Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-311120 SN - 2072-4292 VL - 15 IS - 7 ER - TY - JOUR A1 - Maihoff, Fabienne A1 - Friess, Nicolas A1 - Hoiss, Bernhard A1 - Schmid‐Egger, Christian A1 - Kerner, Janika A1 - Neumayer, Johann A1 - Hopfenmüller, Sebastian A1 - Bässler, Claus A1 - Müller, Jörg A1 - Classen, Alice T1 - Smaller, more diverse and on the way to the top: Rapid community shifts of montane wild bees within an extraordinary hot decade JF - Diversity and Distributions N2 - Aim Global warming is assumed to restructure mountain insect communities in space and time. Theory and observations along climate gradients predict that insect abundance and richness, especially of small‐bodied species, will increase with increasing temperature. However, the specific responses of single species to rising temperatures, such as spatial range shifts, also alter communities, calling for intensive monitoring of real‐world communities over time. Location German Alps and pre‐alpine forests in south‐east Germany. Methods We empirically examined the temporal and spatial change in wild bee communities and its drivers along two largely well‐protected elevational gradients (alpine grassland vs. pre‐alpine forest), each sampled twice within the last decade. Results We detected clear abundance‐based upward shifts in bee communities, particularly in cold‐adapted bumble bee species, demonstrating the speed with which mobile organisms can respond to climatic changes. Mean annual temperature was identified as the main driver of species richness in both regions. Accordingly, and in large overlap with expectations under climate warming, we detected an increase in bee richness and abundance, and an increase in small‐bodied species in low‐ and mid‐elevations along the grassland gradient. Community responses in the pre‐alpine forest gradient were only partly consistent with community responses in alpine grasslands. Main Conclusion In well‐protected temperate mountain regions, small‐bodied bees may initially profit from warming temperatures, by getting more abundant and diverse. Less severe warming, and differences in habitat openness along the forested gradient, however, might moderate species responses. Our study further highlights the utility of standardized abundance data for revealing rapid changes in bee communities over only one decade. KW - Alps KW - altitudinal gradient KW - body size KW - climate change KW - global warming KW - hymenoptera KW - pollinator KW - range shifts Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312126 VL - 29 IS - 2 ER -