TY - THES A1 - Wiedemann, Katharina T1 - Frühzeitige Informationen über Systemgrenzen beim hochautomatisierten Fahren T1 - Early information about system limits during conditionally automated driving N2 - Fahrzeughersteller haben die Verfügbarkeit sogenannter hochautomatisierter Fahrfunktionen (SAE Level 3; SAE, 2018) in ihren Modellen angekündigt. Hierdurch wird der Fahrer in der Lage sein, sich permanent von der Fahraufgabe abzuwenden und fahrfremden Tätigkeiten nachzugehen. Allerdings muss er immer noch als Rückfallebene zur Verfügung stehen, um im Fall von Systemgrenzen oder -fehlern (siehe Gold, Naujoks, Radlmayr, Bellem & Jarosch, 2017), die Fahrzeugkontrolle zu übernehmen. Das Übernahmeerfordernis wird dem Fahrer durch die Ausgabe einer Übernameaufforderung vermittelt. Die Übernahme der manuellen Fahrzeugführung aus dem hochautomatisierten Fahren stellt aus psychologischer Sicht einen Aufgabenwechsel dar. Bei der Untersuchung von Aufgabenwechseln im Bereich der kognitiven und angewandten Psychologie zeigte sich vielfach, dass Aufgabenwechsel mit verlängerten Reaktionszeiten und erhöhten Fehlerraten assoziiert sind. Für den Anwendungsfall des automatisierten Fahrens liegen ebenfalls eine Reihe empirischer Studien vor, die darauf hinweisen, dass der Wechsel zum manuellen Fahren mit einer Verschlechterung der Fahrleistung gegenüber dem manuellen Fahren verbunden ist. Da Erkenntnisse vorliegen, dass eine Vorbereitung auf den Aufgabenwechsel die zu erwartenden Kosten verringern kann, ist das Ziel dieser Arbeit die Konzeption und empirische Evaluation einer Mensch-Maschine-Schnittstelle, die Nutzer hochautomatisierter Fahrzeuge durch frühzeitige Vorinformationen über Systemgrenzen auf die Kontrollübernahme vorbereitet. Drei Experimente im Fahrsimulator mit Bewegungssystem betrachteten jeweils unterschiedliche Aspekte frühzeitiger Vorinformationen über bevorstehende Übernahmen. Das erste Experiment untersuchte, ob Fahrer überhaupt von frühzeitigen Situationsankündigungen, beispielsweise im Sinne einer verbesserten Übernahmeleistung, profitieren. Das zweite Experiment befasste sich mit der Frage, wie solche Ankündigungen zeitlich und inhaltlich zu gestalten sind (d. h. wann sie präsentiert werden und welche Informationen sie enthalten sollten), und welchen Einfluss deren Gestaltung auf die Aufgabenbearbeitung (insbesondere deren Unterbrechung und spätere Wiederaufnahme) während der automatisierten Fahrt hat. Um herauszufinden, wie ein Anzeigekonzept zur längerfristigen Planung von fahrfremden Tätigkeiten während des automatisierten Fahrens beitragen könnte, fand im dritten Experiment ein Vergleich von Situationsankündigungen, die vor dem Erreichen einer Übernahmesituation ausgegeben wurden, mit kontinuierlich präsentierten Informationen über die verbleibende Distanz zur nächsten Systemgrenze statt. In allen Studien wurde neben den Auswirkungen frühzeitiger Vorinformationen auf die Übernahmeleistung und Bearbeitung von fahrfremden Tätigkeiten auch untersucht, welche Auswirkungen ein erweitertes Übernahmekonzept auf die Fahrerreaktion in Grenz- und Fehlerfällen, in denen Vorinformationen entweder nicht oder fehlerhaft angezeigt wurden, hat. Für die Gestaltung zukünftiger Übernahmekonzepte für hochautomatisierte Fahrzeuge kann basierend auf den Ergebnissen empfohlen werden, frühzeitige Anzeigen von Systemgrenzen zur Ermöglichung eines sicheren und komfortablen Wechsels zwischen dem manuellen und dem automatisierten Fahren in die Mensch-Maschine-Schnittstelle zu integrieren. Basierend auf den Ergebnissen dieser Arbeit liegt der empfohlene Zeitpunkt für diskrete Ankündigungen bei einer Reisegeschwindigkeit von 120 km/h bei etwa 1000 Meter (d. h. ca. 30 Sekunden) vor der Ausgabe der Übernahmeaufforderung. Zudem wird empfohlen zur Abschätzung der verbleibenden Zeit im automatisierten Modus eine Anzeige der Entfernung zur nächsten Systemgrenze in das Konzept zu integrieren, die dem Fahrer eine längerfristige Aufgabenplanung ermöglicht. Neben der reinen Anzeige des Übernahmeerfordernisses sollten dem Fahrer auch Informationen über das erforderliche Fahrmanöver nach der Kontrollübernahme übermittelt werden. N2 - Vehicle manufacturers have announced the availability of so-called conditionally automated driving (SAE Level 3, SAE, 2018) in their upcoming vehicles. As a result, drivers will no longer have to permanently carry out the driving task and are free to pursue non-driving related activities while the vehicle is conditionally automated. However, they still have to be available as a fallback to take over vehicle control in the event of a system limit or error (see Gold, Naujoks, Radlmayr, Bellem & Jarosch, 2017). The requirement to take over driving is communicated via a so-called takeover request. From a psychological point of view, taking over manual vehicle control after driving with the automation represents a task switch. Studies from the field of cognitive and applied psychology have shown that task switches are associated with prolonged reaction times and increased error rates. Regarding the application of these findings to automated driving, there are also a number of empirical studies indicating that switching to manual driving takes considerable time and is associated with a deterioration of driving performance compared to continous manual driving. Since there is evidence that preparation for the task switch can reduce the expected costs, the aim of this work is the conception and empirical evaluation of a human-machine-interface (HMI), which prepares users of conditionally automated vehicles for the takeover by providing them with early information about system limits. Three experiments in a motion-based driving simulator considered different aspects of early information about an upcoming system limit. The first experiment examined whether drivers benefit from early situation announcements compared to imminent takeover requests, for example in terms of improved takeover performance. The second experiment dealt with the question of how such announcements are to be designed in terms of their timing and content (i. e., when they should be presented and what information they should contain), and how they influence the interruption and subsequent resumption of non-driving related tasks that are carried out during the automated drive. To find out how the HMI could contribute to longer-term planning of non-driving related activities during automated driving, a comparison of discrete situation announcements issued before reaching a takeover situation with continuously presented information about the remaining distance to the next system limit took place in the third study. In addition to the effects of early information on takeover performance and engagement in non-driving related tasks, all studies also examined the effects of the extended takeover concept on the driver’s reaction during system failures in which prior information is either not displayed or is displayed incorrectly. Based on the results, it may be recommended to integrate early indications of system limits to enable a safe and comfortable task switch between automated and manual driving. The recommended timing for discrete announcements at a cruising speed of 120 km/h is approximately 1000 meter (i. e., approximately 30 seconds) before issuing an imminent takeover request right before the system limit. It is also recommended to include an indication of the remaining distance to an upcoming system limit in the display concept, which allows for a longer-term planning of non-driving related task during the automated driving. In addition to the mere indication of the takeover requirement, the driver should also be provided with information about the required driving maneuver after the takeover of control. KW - Autonomes Fahrzeug KW - Fahrerverhalten KW - Automatisiertes Fahren KW - Mensch-Maschine-Interaktion KW - Verkehrspsychologie KW - Mensch-Maschine-Schnittstelle KW - Automation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216581 ER - TY - THES A1 - Leutert, Florian T1 - Flexible Augmented Reality Systeme für robotergestützte Produktionsumgebungen T1 - Flexible Augmented Reality systems for robot-based production environments N2 - Produktionssysteme mit Industrierobotern werden zunehmend komplex; waren deren Arbeitsbereiche früher noch statisch und abgeschirmt, und die programmierten Abläufe gleichbleibend, so sind die Anforderungen an moderne Robotik-Produktionsanlagen gestiegen: Diese sollen sich jetzt mithilfe von intelligenter Sensorik auch in unstrukturierten Umgebungen einsetzen lassen, sich bei sinkenden Losgrößen aufgrund individualisierter Produkte und häufig ändernden Produktionsaufgaben leicht rekonfigurieren lassen, und sogar eine direkte Zusammenarbeit zwischen Mensch und Roboter ermöglichen. Gerade auch bei dieser Mensch-Roboter-Kollaboration wird es damit notwendig, dass der Mensch die Daten und Aktionen des Roboters leicht verstehen kann. Aufgrund der gestiegenen Anforderungen müssen somit auch die Bedienerschnittstellen dieser Systeme verbessert werden. Als Grundlage für diese neuen Benutzerschnittstellen bietet sich Augmented Reality (AR) als eine Technologie an, mit der sich komplexe räumliche Daten für den Bediener leicht verständlich darstellen lassen. Komplexe Informationen werden dabei in der Arbeitsumgebung der Nutzer visualisiert und als virtuelle Einblendungen sichtbar gemacht, und so auf einen Blick verständlich. Die diversen existierenden AR-Anzeigetechniken sind für verschiedene Anwendungsfelder unterschiedlich gut geeignet, und sollten daher flexibel kombinier- und einsetzbar sein. Auch sollen diese AR-Systeme schnell und einfach auf verschiedenartiger Hardware in den unterschiedlichen Arbeitsumgebungen in Betrieb genommen werden können. In dieser Arbeit wird ein Framework für Augmented Reality Systeme vorgestellt, mit dem sich die genannten Anforderungen umsetzen lassen, ohne dass dafür spezialisierte AR-Hardware notwendig wird. Das Flexible AR-Framework kombiniert und bündelt dafür verschiedene Softwarefunktionen für die grundlegenden AR-Anzeigeberechnungen, für die Kalibrierung der notwendigen Hardware, Algorithmen zur Umgebungserfassung mittels Structured Light sowie generische ARVisualisierungen und erlaubt es dadurch, verschiedene AR-Anzeigesysteme schnell und flexibel in Betrieb zu nehmen und parallel zu betreiben. Im ersten Teil der Arbeit werden Standard-Hardware für verschiedene AR-Visualisierungsformen sowie die notwendigen Algorithmen vorgestellt, um diese flexibel zu einem AR-System zu kombinieren. Dabei müssen die einzelnen verwendeten Geräte präzise kalibriert werden; hierfür werden verschiedene Möglichkeiten vorgestellt, und die mit ihnen dann erreichbaren typischen Anzeige- Genauigkeiten in einer Evaluation charakterisiert. Nach der Vorstellung der grundlegenden ARSysteme des Flexiblen AR-Frameworks wird dann eine Reihe von Anwendungen vorgestellt, bei denen das entwickelte System in konkreten Praxis-Realisierungen als AR-Benutzerschnittstelle zum Einsatz kam, unter anderem zur Überwachung von, Zusammenarbeit mit und einfachen Programmierung von Industrierobotern, aber auch zur Visualisierung von komplexen Sensordaten oder zur Fernwartung. Im Verlauf der Arbeit werden dadurch die Vorteile, die sich durch Verwendung der AR-Technologie in komplexen Produktionssystemen ergeben, herausgearbeitet und in Nutzerstudien belegt. N2 - During recent years, production environments involving industrial robots have moved away from static, shielded production lines towards a more open, flexible and adaptable setup, where human and robot are working in close proximity or even collaborating on the same workpiece. This change necessitates improving existing user interfaces for these robots, to allow for an easier understanding of the complex robot data as well as simplifying their handling and programming. Augmented Reality (AR) is a technology that allows for realizing that: it enables the user to simply grasp complex spatial data by seeing it - appropriately visualized - in his natural work environment. This thesis introduces the Flexible Augmented Reality framework, an AR framework that allows for quick and easy realization of multiple monitor- or projection-based AR displays in the work environment of industrial robots, greatly simplifying and improving their handling without the use of specialized AR hardware. The developed framework combines and bundles all the necessary software functions and algorithms, among others for realizing the fundamental AR visualizations, calibrating the necessary hardware, capturing the display environment utilizing Structured Light and easily creating generic AR visualizations, to allow for fast deployment and parallel operation of multiple AR interfaces in different production and application fields. Among describing the developed algorithms as well as properties of the employed hardware, a thorough evaluation of the achievable display accuracy with standard hardware is given in this thesis. Finally, the framework was tested and evaluated in a number of different practical application scenarios involving industrial robot programming, remote surveillance and control, as well as intuitive sensor data display or remote maintenance. The developed solutions are presented in detail together with performed evaluations and user studies, exemplifying the framework's improvement of traditional industrial robot interfaces. T3 - Forschungsberichte in der Robotik = Research Notes in Robotics - 24 KW - Erweiterte Realität KW - Industrieroboter KW - Mensch-Maschine-Schnittstelle KW - Augmented Reality KW - Nutzerschnittstellen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249728 SN - 978-3-945459-39-3 ER -