TY - THES A1 - Zink, Christoph T1 - Biochemische und strukturbiologische Charakterisierung der Inhibition der Pyridoxal 5´-Phosphat Phosphatase durch 7,8-Dihydroxyflavon T1 - Biochemical and structural characterization of pyridoxal 5´-phosphate phosphatase inhibitor 7,8-dihydroxyflavone N2 - Die Pyridoxal-5‘-Phosphat Phosphatase (PDXP), auch bekannt als Chronophin (CIN), ist eine HAD-Phosphatase, die beim Menschen ubiquitär exprimiert wird und eine entscheidende Rolle im zellulären Vitamin-B6-Metabolismus einnimmt. PDXP ist in der Lage Pyridoxal-5‘-Phosphat (PLP), die co-enzymatisch aktive Form von Vitamin B6, zu dephosphorylieren. In-vivo Studien mit Mäusen zeigten, dass die Abwesenheit von PDXP mit verbesserten kognitiven Leistungen und einem verringerten Wachstum von Hirntumoren assoziiert ist. Dies begründet die gezielte Suche nach einem pharmakologischen Inhibitor für PDXP. Ein Hochdurchsatz-Screen legte nahe, dass 7,8-Dihydroxyflavon (7,8-DHF) hierfür ein potenzieller Kandidat ist. Zahlreiche Studien beschreiben bereits vielfältige positive neurologische Effekte nach in-vivo Administration von 7,8-DHF, allerdings bleibt der genaue Wirkmechanismus umstritten und wird bis dato nicht mit PDXP in Zusammenhang gebracht. Ziel dieser Arbeit ist es, die Inhibition von PDXP durch 7,8-DHF näher zu charakterisieren und damit einen Beitrag zur Beantwortung der Frage zu leisten, ob PDXP an den 7,8-DHF-induzierten Effekten beteiligt ist. Hierzu wurde der Effekt von 7,8-DHF auf die enzymatische Aktivität von rekombinant hergestelltem, gereinigtem PDXP in in-vitro Phosphatase-Assays charakterisiert. Um die Selektivität von 7,8-DHF gegenüber PDXP zu untersuchen, wurden fünf weitere HAD-Phosphatasen getestet. Unter den analysierten Phosphatasen zeigte einzig die dem PDXP nah verwandte Phosphoglykolat Phosphatase (PGP) eine geringer ausgeprägte Sensitivität gegen 7,8-DHF. Ein Vergleich von 7,8-DHF mit sechs strukturell verwandten, hydroxylierten Flavonen zeigte, dass 7,8-DHF unter den getesteten Substanzen die höchste Potenz und Effektivität aufwies. Außerdem wurde eine Co-Kristallisation von PDXP mit 7,8-DHF durchgeführt, deren Struktur bis zu einer Auflösung von 2,0 Å verfeinert werden konnte. Die in der Kristallstruktur identifizierte Bindungsstelle von 7,8-DHF an PDXP wurde mittels verschiedener, neu generierter PDXP-Mutanten enzymkinetisch bestätigt. Zusammenfassend zeigen die hier beschriebenen Ergebnisse, dass 7,8-DHF ein direkter, selektiver und vorwiegend kompetitiver Inhibitor der PDXP-Aktivität ist, mit einer IC50 im submikromolaren Bereich. Die Ergebnisse dieser in-vitro Untersuchungen motivieren zu weiterer Forschung bezüglich der 7,8-DHF-vermittelten Inhibition der PDXP-Aktivität in Zellen, um die Frage beantworten zu können, ob PDXP auch in-vivo ein relevantes Target für 7,8-DHF darstellt. N2 - Pyridoxal 5'-phosphate phosphatase (PDXP, also known as chronophin, CIN), is a ubiquitously expressed HAD-phosphatase. PDXP is known to dephosphorylate pyridoxal-5'-phosphate (PLP), the biologically active form of vitamin B6 that is one of the most versatile cofactors found in nature. In-vivo studies revealed improved cognition and impaired glial tumor growth with mice absent of PDXP, and caused the search for a pharmacological inhibitor of PDXP. The result of a high-throughput screen suggested that 7,8-dihydroxyflavone (7,8-DHF) is a suitable candidate for this. Interestingly, numerous scientific studies highlighted diverse positive neurological effects after administration of 7,8-DHF to mice, however, the precise mode of action remains disputed, and at this date is unrelated to PDXP. The aim of this work is to characterize the inhibition of PDXP by 7,8-DHF. This approach is a first step to determine whether 7,8-DHF may indeed exert some of its neurological effects via PDXP inhibition. For this purpose, the effect of 7,8-DHF on the enzymatic activity of recombinantly expressed and purified PDXP was characterized in in-vitro phosphatase assays. To investigate the selectivity of 7,8-DHF on PDXP, five additional HAD phosphatases were tested. Among the phosphatases analyzed, only the phosphoglycolate phosphatase (PGP), closely related to PDXP, showed a less pronounced sensitivity to 7,8-DHF. A comparison of 7,8-DHF with six structurally related, hydroxylated flavones showed that 7,8-DHF had the highest potency and effectiveness among the substances tested. In addition, a co-crystallization of PDXP with 7,8-DHF was carried out. The resulting co-crystal structure could be resolved and refined to a resolution of 2.0 Å. The binding site of the ligand to the enzyme identified in the crystal structure was confirmed via activity-based assays using various newly generated PDXP mutants. In summary, the results described here show that 7,8-DHF is a direct, selective, and predominantly competitive inhibitor of PDXP activity with an IC50 in the submicromolar range. The results of these in-vitro studies motivate further research into the 7,8-DHF-mediated inhibition of PDXP activity in cells to be able to answer the question of whether PDXP is also a relevant target for 7,8-DHF in-vivo. KW - Pyridoxalphosphat KW - Pyridoxalphosphat Phosphatase KW - PDXP KW - 7,8-Dihydroxyflavon KW - 7,8-dihydroxyflavone KW - Chronophin KW - Pyridoxal phosphate phosphatase Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-251511 ER - TY - THES A1 - Witzinger, Linda T1 - Rolle der Pyridoxal 5´-Phosphat Phosphatase PDXP im Vitamin B6-Metabolismus muriner Erythrozyten und Hippocampi T1 - Role of the pyridoxal 5´-phosphate phosphatase PDXP in the vitamin B6 metabolism of murine red blood cells and hippocampi N2 - Die Phosphatase PDXP (auch bekannt als Chronophin) gehört zur Familie der HAD Phosphatasen, einer ubiquitär exprimierten Enzymklasse mit wichtigen physiologischen Funktionen. PDXP zeigt Phosphatase-Aktivität gegenüber seinem Substrat Pyridoxal 5´-Phosphat (PLP), der aktivierten Form von Vitamin B6. PDXP-defiziente Mäuse (Knockout-Mäuse) weisen im Vergleich zu Wildtypen verdoppelte PLP-Konzentrationen in Erythrozyten sowie im Gesamthirn auf. Vermutlich kommt PDXP daher eine wichtige Funktion in Erythrozyten und im Hirn zu. Ziel dieser Arbeit war es, erste Einblicke in diese Funktion(en) von PDXP zu erlangen. Hierzu wurden HPLC-basierte Analysen der erythrozytären PLP-Konzentrationen in Wildtyp- sowie PDXP-defizienten Mäusen durchgeführt. Dabei ließen sich die rund doppelt so hohen erythrozytären PLP-Level in den KO-Mäusen bestätigen. Zudem ist es gelungen, eine Methode zur Messung der endogenen Phosphatase-Aktivität von PDXP in Erythrozytenlysaten zu etablieren. So konnte im Wildtyp anhand der Verringerung der PLP-Konzentrationen pro Zeiteinheit eine erythrozytäre PDXP-Aktivität nachgewiesen werden. Dazu waren die Inkubation mit Pyridoxin, sowie die Anwendung eines Inhibitors der PDXK notwendig. Eine bis dato vermutete Funktion der PDXP, zur Mobilisation von erythrozytärem PLP während Fastenzeiten, konnte ausgeschlossen werden. So zeigte der Vergleich der erythrozytären PLP-Konzentrationen aus gefasteten mit normal gefütterten Tieren in beiden Genotypen exakt dieselbe prozentuale PLP-Verringerung. Während Nahrungszufuhr ließ sich jedoch eine Funktion der Phosphatase PDXP als „Converter“ von Pyridoxin zu Pyridoxal erkennen. Ausgehend von PN konnte im Wildtyp (über die Zwischenprodukte PNP und PLP) eine PDXP-abhängige Dephosphorylierung von PLP zu PL erfolgen. So wies der Wildtyp eine rund vierfach höhere PL-Produktion auf, verglichen mit der PDXP-defizienten Maus. Die Phosphatase PDXP erwies sich als essenziell für die erythrozytäre Konversion von Pyridoxin zu Pyridoxal. Dadurch erreicht der Organismus eine metabolische Flexibilität, die ihn bis zu einem gewissen Grad unabhängig von der Nahrungsauswahl macht. Zudem können Zellen oder Organe, denen durch das Fehlen der PNPO, die Konversion zu PLP nicht möglich ist, mit PL versorgt werden. Aus der hohen Reaktivität von PLP mit umliegenden Nucleophilen ergibt sich eine gewisse Problematik für die Zelle im Umgang mit freiem PLP. So liegt der Großteil des erythrozytären PLPs gebunden an Proteine (vor allem Hämoglobin) vor. Anhand von Filtern (MWCO, 3000) ließ sich zwischen der hier definiert als „freien“ und der „gebundenen“ Form von PLP differenzieren. So konnten erste Erkenntnisse zur Rolle von PDXP als Determinator freier PLP-Konzentrationen in Erythrozyten und insbesondere im Hippocampus erlangt werden. Im Hippocampus ergaben sich insgesamt deutlich höhere Konzentrationen an freiem PLP als in den Erythrozyten und es bestand zudem ein Unterschied zwischen den Genotypen. So wiesen die KO-Mäuse ~1/3 höhere freie PLP-Konzentrationen im Vergleich zu den Wildtypen auf. Schließlich konnte ein Effekt des Tieralters auf den PLP-Metabolismus festgestellt werden. Sowohl in den Erythrozyten als auch im Hippocampus ergaben sich alterskorrelierte Änderungen ihrer PLP-Konzentrationen. Zudem zeigten Western Blot Analysen altersbedingte Unterschiede ihrer Vitamin B6-Enzymexpressionen. So wiesen ältere Wildtypen im Hippocampus eine fünffach erhöhte PDXP-Expression verglichen mit jüngeren Tieren auf. In den Erythrozytenlysaten hingegen zeigten ältere Tiere beider Genotypen eine rund vierfach geringere PNPO-Expression gegenüber jüngeren Tieren. Die mit dem Alter eintretende physiologische Verringerung der erythrozytären PNPO-Expression würde somit für den Organismus einen Verlust seiner metabolischen Flexibilität bedeuten, die mit der Konversion von PN zu PL einhergeht. N2 - The phosphatase PDXP, also called Chronophin, is a member of the ubiquitously expressed HAD-phosphatases, which have some important physiological functions in the organism. Its substrate pyridoxal 5´-phosphate (PLP) is the active form of vita-min B6, an important cofactor of several reactions. PDXP-deficient mice (KO-mice) have PLP-concentrations in erythrocytes and in the whole brain twice as high as wildtype mice. It is assumed that PDXP therefore has an important function in erythrocytes and in the brain. The aim of the study was to gain initial insights into these functions of PDXP. For this purpose, HPLC-based analyses of the PLP-concentrations in erythrocytes from WT- and KO-mice were carried out. The doubled PLP-levels in the RBCs of KO-mice could be confirmed. In addition, a method for measuring the endogenous phosphatase activity of PDXP in red cell lysates was established. The activity of PDXP could be measured by the reduction of its substrate PLP over time. This required the incubation with pyridoxine and the inhibition of PDXK by ginkgotoxine. An assumed function of PDXP in mobilization of PL(P) from the erythrocytes in fasting conditions could be ruled out. Therefore, a comparison between the PLP-concentrations in RBCs of fasted mice with normal fed ones was done. Surprisingly the fasted KO-mice showed the same percentaged decrease of cellular PLP-level as the fasted WT-mice. During vitamin B6 intake however, a function of PDXP as being a “converter” of pyridoxine to pyridoxal was found. Starting with PN, a PDXP-mediated dephosphorylation from PLP to PL could take place in the wildtype mice (via the intermediate steps PNP and PLP). Consequently, the WT´s production of PL quadrupled compared to the KO´s. PDXP turned out to be essential for the conversion of pyridoxine to pyridoxal in erythrocytes. This conversion confers some metabolic flexibility to the organism and to a certain extent makes it independent of the choice of food. Moreover, cells and organs, that due to the absence of PNPO cannot produce PL(P) themselves, can be provided via erythrocytes. The high reactivity of PLP with surrounding nucleophiles poses a certain problem for the cell in dealing with free PLP. The majority of the PLP in RBCs is bound to proteins (primarily hemoglobin). It was distinguished between the here termed “free” PLP and the bound PLP by using filter devices with a MWCO at 3 kDa. First insights could be gained about PDXP as a determinant of free PLP-levels in erythrocytes and hippocampus. The amount of free PLP in the hippocampus was significantly higher than in the RBCs. Additionally, the hippocampus showed some differences in the con¬centration of free PLP between WT- and KO-mice. The level of free PLP in PDXP deficient mice was one third higher than in wildtype mice. Finally, some correlation between the age of the mice and their PLP-metabolism was found. The results revealed changes of the PLP-concentrations with age in the RBCs and the hippocampus. Moreover, western blot analyses showed some age-related differences in the expression of vitamin B6 enzymes. In the hippocampus older wildtype mice showed a quintupled expression of PDXP compared to younger ones. However, western blot analyses of red blood cell lysates from older animals revealed a lower expression of PNPO by a factor of four. For the organism this physiological reduction of its PNPO expression with age would mean a loss of metabolic flexibility, that is accompanied by the conversion from PN to PL. KW - Vitamin B6 KW - Vitamin-B6-Stoffwechsel KW - Pyridoxalphosphat KW - Erythrozyt KW - Phosphatasen KW - PDXP KW - PLP KW - HAD-Phosphatasen KW - Vitamin B6 Metabolismus KW - pyridoxal phosphate KW - red blood cells Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216546 ER - TY - THES A1 - Kestler, Christian T1 - Untersuchungen über die Dimerisierung der HAD-Phosphatase Chronophin T1 - Investigations of the dimerization of the HAD-phosphatase Chronophin N2 - Phosphatasen der HAD (haloacid dehalogenase)-Familie sind weit verbreitet in allen Domänen des Lebens und erfüllen die verschiedensten zellulären Aufgaben, beispielsweise in Metabolismus und Zellregulation. Die HAD-Phosphatase Chronophin zeigt Phosphataseaktivität unter anderem gegenüber Pyridoxal-5‘-Phosphat (PLP), einem essentiellen Kofaktor vieler biochemischer Prozesse, und Phosphocofilin, einem Regulator des Aktinzytoskeletts. Chronophin dimerisiert über die Interaktion zweier identischer Untereinheiten zu einem Homodimer. Ziel dieser Arbeit war, die Rolle dieser Dimerisierung, eines bei HAD-Phosphatasen weit verbreiteten Oligomerisierungszustandes, näher zu untersuchen. Hierzu wurde die Dimerisierung erfolgreich durch den Austausch der Aminosäuren Alanin 194 und 195 zu Lysinen (Mutation A194K/A195K) gestört. Der Nachweis einer konstitutiv monomeren Chronophin-Mutante mittels Größenausschlusschromatographie, Rasterkraftmikroskopie, analytischer Ultra¬zentrifugation und Zellexperimenten wurde schließlich über die Struktur¬auflösung mittels Röntgenstrukturanalyse bestätigt. Aktivitätsmessungen der monomeren Mutante gegenüber dem Substrat PLP zeigten eine deutliche Verminderung der Phosphataseaktivität. Die Röntgenstrukturanalyse von Chronophin A194K/A195K im Vergleich mit Wildtyp-Chronophin enthüllte einen Mechanismus, wie die sogenannte Substratspezifitätsschleife, die für die korrekte Positionierung des PLP sorgt, im Homodimer des Wildtyps durch Interaktionen mit dem zweiten Protomer stabilisiert wird. Diese Stabilisierung fehlt bei der monomeren Mutante und äußert sich in einer veränderten Stellung der Substratspezifitätsschliefe. Der Strukturvergleich von Chronophin mit weiteren HAD-Phosphatasen der selben strukturellen Untergruppe vom C2a-Typ lässt eine allgemeine Gültigkeit der hier beschriebenen allosterischen Kontrolle von Substratspezifität über Homodimerisierung bei HAD-Phosphatasen vermuten und könnte so neue Ansatzpunkte für möglicherweise auch therapeutisch nutzbare Aktivitätshemmungen liefern. N2 - Investigations of the dimerization of the HAD-phosphatase Chronophin KW - Dimerisierung KW - Phosphatasen KW - Pyridoxalphosphat KW - Ortspezifische Mutagenese KW - Chronophin KW - Substratspezifitätsschleife Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149777 ER -