TY - THES A1 - Schust, Jochen T1 - Neue Ansätze zur Identifizierung niedermolekularer Inhibitoren der STAT3-Aktivierung und -Homodimerisierung T1 - New approaches to identify small molecule inhibitors of STAT3 activation and dimerization N2 - Die STATs (signal transducers and activators of transcription) sind eine Familie latent zytoplasmatischer Transkriptionsfaktoren, die Signale von der Zellmembran in den Zellkern weiterleiten. Ein Mitglied der Proteinfamilie, STAT3, ist aufgrund übermäßiger Tyrosinkinase-Aktivität in einer breiten Vielzahl von Krebszelllinien und menschlichen Tumoren konstitutiv-aktiv. Um kleine organische Moleküle zu identifizieren, die die Funktion der SH2-Domäne von STAT3 blockieren und dadurch die Aktivität und die Dimerisierung des Proteins inhibieren, wurde ein Hochdurchsatz-Verfahren entwickelt, welches auf Fluoreszenzpolarisation beruht. Das Prinzip dieses Verfahrens war die Bindung eines Fluorescein-markierten Phosphotyrosin-Peptids, welches von gp130, einer Untereinheit des Interleukin-6-Rezeptors, abgeleitet war, an nicht phosphoryliertes STAT3-Protein. Der Kd Wert dieser Bindung betrug 150 nM und der Assay war stabil im Hinblick auf die Salzkonzentration, der Konzentration an Dimethylsulfoxid und der Zeit. Der Assay wurde auf ein 384-Lochplattenformat angepasst und wies einen Z’-Wert von 0,87 auf. Das Fluorscein-markierte Phosphotyrosin-Peptid band spezifisch an die SH2-Domäne von STAT3 und die Bindung konnte durch Phosphotyrosin-Peptide unterschiedlich stark inhibiert werden. Die Hochdurchsatz-Analyse mehrerer Substanzbibliotheken führte schließlich zur Identifikation eines spezifischen STAT3-Inhibitors, Stattic (STAT three inhibitory compound). Stattic ist das erste nicht-peptidische kleine Molekül, welches selektiv die Funktion der STAT3-SH2-Domäne beeinträchtigte. Dabei spielte der Aktivierungszustand von STAT3 in vitro keine Rolle. Die gleichzeitige Inkubation mit Stattic führte im Fluoreszenzpolarisations-Assay zur Inhibition der Bindung des Fluorescein-markierten Phosphotyrosin-Peptids an die SH2-Domäne von STAT3. Diese antagonistische Reaktion stellte sich als stark temperaturabhängig heraus und hatte in vitro bei der physiologisch relevanten Temperatur von 37°C nach 60 Minuten einen IC50 Wert von 5,1 µM. Zusammen mit einer Abhängigkeit von der Zeit wiesen die Ergebnisse auf eine irreversibel ablaufende Reaktion unter Knüpfung einer kovalenten Bindung zwischen Stattic und STAT3 hin. Die Inhibition war spezifisch gegenüber der Bindung verschiedener Fluorescein-markierten Phosphotyrosin-Peptide an die jeweiligen Proteine STAT1, STAT5b und Lck und Stattic hatte ebenfalls nur einen sehr geringen Effekt auf die Proteindimerisierung von c-Myc/Max und Jun/Jun. Die genauere Betrachtung der Kinetik der antagonistischen Reaktion zeigte eine signifikante Verlangsamung der Reaktionsgeschwindigkeit beim Vergleich zwischen STAT3 und STAT1 bzw. STAT3 und STAT5b. Die Inhibierung der Bindung des entsprechenden Fluorescein-markierten Phosphotyrosin-Peptids an das Protein Lck durch Stattic war hingegen nicht zeitabhängig. Diese Versuche zeigten eine deutliche Präferenz der Bindung von Stattic an das Protein STAT3. Die Verdrängung des Fluorescein-markierten Phosphoytrosin-Peptids von der STAT3-SH2-Domäne durch Stattic verlief kompetitiv zur Inhibition mit einem Phophotyrosin-Peptid, welches an die SH2-Domäne von STAT3 bindet. In Verbindung mit den vorherigen Experimenten wies dies auf eine kovalente Bindung von Stattic innerhalb des STAT3-Proteins hin. Eine abschließende Struktur-Wirkungs-Beziehung in vitro zeigte die Notwendigkeit sowohl von der Nitrogruppe als auch von der Doppelbindung der Vinylsulfongruppe in Stattic für die Bindung an STAT3 und untermauerte die These, dass Stattic kovalent innerhalb des STAT3-Proteins bindet. In zellbiologischen Systemen wurde die Wirksamkeit von Stattic anhand verschiedener molekularbiologischer Assays bestätigt. Stattic inhibierte selektiv die Tyrosinphosphorylierung von STAT3 in HepG2 Zellen, in NIH3T3/v-Src Zellen und in den Brustkrebszelllinien MDA-MB-231 und MDA-MB-435S. Aber auch bereits phosphorylierte STAT3-Proteine wurden durch Stattic in vitro an der Homodimerisierung gehindert, was in einer EMSA-Analyse gezeigt wurde. Somit inhibierte Stattic in vitro selektiv die Signalkette von STAT3 unabhängig von dessen Aktivierungszustand. Andere Signalketten oder die Funktion der in der Signalkette über STAT3 liegenden Tyrosinkinasen wurden in Zellen nicht beeinflusst. Im Folgenden konnte demonstriert werden, dass Stattic als direkter STAT3-Inhibitor dessen Lokalisierung in den Zellkern inhibierte, nicht jedoch die Lokalisierung des Gegenspielers STAT1. Weiterhin reduzierte der Einsatz von Stattic selektiv das von v-Src in NIH3T3 Zellen induzierte und von STAT3-abhängige Wachstum von Kolonien in Weichagar. Dass Stattic schließlich selektiv die Apoptoserate in Zellen mit konstitutiver STAT3-Aktivtät erhöhte, bestätigte die bisherigen Daten. Mit Stattic konnte daher ein neues biologisches Werkzeug generiert werden, um selektiv STAT3 in Zelllinien oder Tumoren in Tiermodellen auszuschalten, die eine konstitutive STAT3-Aktivität aufweisen. N2 - Signal Transducers and Activators of Transcription (STATs) are a family of latent cytoplasmic transcription factors which signals from the cell membrane to the nucleus. One member of the protein family, STAT3, is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of cancer cell lines and human tumors. A high-throughput assay based on fluorescence polarization was developed to identify small organic molecules blocking the function of the STAT3 SH2 domain and thereby inhibiting STAT3 activity and dimerization. The principle of the assay was the binding of a fluorescein-labeled phosphotyrosine-peptide derived from the interleukin-6 receptor subunit gp130 to unphosphorylated STAT3 with a Kd of 150 nM. The assay was stable with regard to salt concentration, dimethyl sulfoxide concentration, and time. It has been adapted to a 384-well format, with a Z’ value of 0.87. The fluorecein-labeled phosphotyrosine-peptide bound specifically to the STAT3 SH2 domain and this binding could be inhibited by different phosphotyrosine-peptides with varying activities. The high-throughput screening of a number of compound libraries finally lead to the identification of a specific STAT3 inhibitor, dubbed Stattic (STAT three inhibitory compound). Stattic is depicted as the first non-peptidic small molecule having an selective impact on the function of the STAT3 SH2 domain. Thereby the activation state of STAT3 was irrelevant in vitro. Simultaneous incubation with Stattic inhibited the binding of the fluorescein-labeled phosphotyrosine-peptide to the SH2 domain of STAT3 in the fluorescence polarization assay. This antagonistic reaction turned out to be strongly temperature-dependent and showed an IC50 of 5.1 µM in vitro at the physiological relevant temperature of 37°C after 60 minutes incubation. With regard to an time-dependency these results suggested an irreversible reaction with the formation of a covalent bond between Stattic and STAT3. The inhibitory reaction was specific over the binding of different fluorescein-labeled phosphotyrosin-peptides to the particular proteins STAT1, STAT5b and Lck, and Stattic also only marginally inhibited the protein dimerization of c-Myc/Max or Jun/Jun. A closer look on the kinetics of the reaction revealed a significant slowdown of the reaction speed comparing STAT3 to STAT1 or STAT3 to STAT5b. Stattic inhibited the binding of the corresponding fluorescein-labeled phosphotyrosine-peptides to Lck in a time-independent way altogether showing a clear preference of Stattic binding to STAT3. The displacement of the fluorescein-labeled phosphotyrosine-peptide from the STAT3 SH2 domain through Stattic was competitive to a phosphotyrosine-peptide binding to the SH2 domain of STAT3. With regard to other results, this result indicated Stattic covalently binding to STAT3. A structure-activity relationship in vitro showed the nitro moiety and the double bond within the vinylsulfone moiety of stattic being important for binding to STAT3. This confirmed the indication that Stattic covalently binds to STAT3 domain. The effectiveness of Stattic in cellular systems was proven by different molecular biological assays. Stattic selectively inhibited the tyrosine phosphorylation in HepG2 cells, in NIH3T3/v-src cells as well as in the breast cancer cell lines MDA-MB-231 and MDA-MB-435S. But also STAT3 proteins which already were phosphorylated could not dimerize after incubation with stattic in vitro which was shown with an EMSA analysis. Therby Stattic also inhibited STAT3 signaling in vitro regardless of STAT3 phosphorylation. Other signalling pathways or function of upstream tyrosinkinases in cells were not inhibited at the same time. It could be demonstrated that the direct STAT3 inhibitor Stattic specifically inhibited nuclear localization of STAT3, but not of its counterpart STAT1. Stattic reduced v-src induced STAT3 dependent colony growth of NIH3T3 cells in soft agar. The results were confirmed by Stattic selectively increasing the apoptotic rate in cell lines having constitutively active STAT3. In summary Stattic turned out to be a novel biological tool to selectively inhibit STAT3 in cell lines or tumor animal models which show constitutive active STAT3. KW - STAT KW - Inhibitor KW - Stattic KW - Chemische Biologie KW - STAT3 KW - niedermolekularer Inhibitor KW - Stattic KW - chemical biology KW - STAT3 KW - small molecule inhibitor Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19952 ER - TY - THES A1 - Frank, Nicolas Clemens T1 - Lokale axonale Wirkungen der CNTF-STAT3 Signalkaskade in Motoneuronen der pmn Maus - einem Mausmodel für die Amyotrophe Lateralsklerose T1 - Local Axonal Function of CNTF-STAT3 Signaling in Motoneurons of the pmn-Mouse – a Mouse Model for Amyotrophic Lateral Sclerosis N2 - 1. Zusammenfassung Während der Embryogenese und nach Verletzungen von Nerven regulieren neurotrophe Faktoren Signalwege für Apoptose, Differenzierung, Wachstum und Regeneration von Neuronen. In vivo Experimente an neugeborenen Nagern haben gezeigt, dass der Verlust von Motoneuronen nach peripherer Nervenläsion durch die Behandlung mit GDNF, BDNF, und CNTF reduziert werden kann In der pmn-Mausmutante, einem Modell für die Amyotrophe Lateralsklerose, führt die Gabe von CNTF, nicht aber von GDNF zu einem verzögerten Krankheitsbeginn und einem verlangsamten Fortschreiten der Motoneuronendegeneration. Auslöser der Motoneuronendegeneration in der pmn-Maus ist eine Mutation im Tubulin spezifischen Chaperon E (Tbce) Gen, das für eines von fünf Tubulin spezifischen Chaperonen (TBCA-TBCE) kodiert und an der Bildung von -Tubulinheterodimeren beteiligt ist. Diese Arbeit sollte dazu beitragen, die CNTF-induzierten Signalwege zu entschlüsseln, die sich lindernd auf den progredienten Verlauf der Motoneuronendegeneration in der pmn-Maus auswirken. Primäre pmn mutierte Motoneurone zeigen ein reduziertes Axonwachstum und eine erhöhte Anzahl axonaler Schwellungen mit einer anomalen Häufung von Mitochondrien - ein frühes Erkennungsmerkmal bei ALS-Patienten. Die Applikation von CNTF nicht aber von BDNF oder GDNF, kann in vitro die beobachteten Wachstumsdefekte und das bidirektionale axonale Transportdefizit in pmn mutierten Motoneurone verhindern. Aus älteren Untersuchungen war bekannt, dass CNTF über den dreiteiligen transmembranen Rezeptorkomplex, bestehend aus CNTFR, LIFR und gp130, Januskinasen aktiviert, die STAT3 an Tyrosin 705 phosphorylieren (pSTAT3Y705). Ich konnte beobachten, dass axonales fluoreszenzmarkiertes pSTAT3Y705 nach CNTF-Gabe nicht retrograd in den Nukleus transportiert wird. Stattdessen führt die CNTF-induzierte Phosphorylierung von STAT3 an Tyrosin 705 zu einer transkriptionsunabhängigen lokalen Reaktion im Axon. Diese pSTAT3Y705 abhängige Reaktion ist notwendig und ausreichend, um das reduzierte Axonwachstum pmn mutierter Motoneurone zu beheben. Wie die Kombination einer CNTF Behandlung mit dem shRNA vermittelten knock-down von Stathmin in pmn mutierten Motoneuronen zeigt, zielt die CNTF-STAT3 Signalkaskade auf die Stabilisierung axonaler Mikrotubuli ab und wirkt sich positiv auf die anterograde und retrograde Mobilität von axonalen Mitochondrien aus. Interessanter Weise konnte ich außerdem feststellen, dass eine akute Gabe von CNTF das mitochondriale Membranpotential in Axonen primärer pmn mutierter und wildtypischer Motoneurone erhöht und einen Anstieg von ATP auslöst. Meine Beobachtungen legen nahe, dass CNTF unerwarteter Weise auch eine transiente Phosphorylierung an STAT3 Serin 727 (pSTAT3S727) auslöst, die zur anschließenden Translokation von pSTAT3S727 in Mitochondrien führt. Diese Ergebnisse zeigen, dass STAT3 mehrere lokale Ziele im Axon besitzt, nämlich axonale Mikrotubuli und Mitochondrien. N2 - 2. Summary Both during development and after injury neurotrophic factors induce signaling pathways that regulate apoptosis, differentiation, growth and regeneration of neurons. In newborn rodents, treatment with GDNF, BDNF and CNTF can reduce the loss of motoneurons after peripheral nerve lesion. In the pmn mutant mouse, a model for amyotrophic lateral sclerosis, CNTF but not GDNF delays disease onset and slows down the course of motoneurons degeneration. Pmn mutant mice, suffer from a point mutation in tubulin specific chaperon E (Tbce) gene that codes for one of five tubulin specific chaperones (TBCA-TBCE) and is necessary for proper -tubulin heterodimer formation. The work presented here was designed to study the specific signaling pathways that are used by CNTF for attenuating progression of motoneuron degeneration in pmn mutant mice. Primary motoneurons from pmn mutant mice show reduced axon growth and irregular axonal swellings with abnormal accumulation of mitochondria – an early hallmark of pathology in ALS patients. In vitro, CNTF but not BDNF or GDNF was able to rescue defective axon growth and to prevent bidirectional transport interruption. It has already been shown that CNTF acts via the tripartite transmembrane receptor complex, composed of CNTFR, LIFR and gp130 to recruit Janus kinases that subsequently phosphorylate STAT3 on tyrosine 705 (pSTAT3Y705). After application of CNTF, I observed that axonal pSTAT3Y705 fused to a fluorescent tag is not retrogradely transported to the nucleus. In contrast, CNTF induced phosphorylation of STAT3 at tyrosine 705 leads to a transcriptional independent local reaction in motor axons which is necessary and sufficient to rescue axon growth in pmn mutant motoneurons. Combining CNTF treatment with shRNA mediated knock-down of Stathmin in pmn mutant motoneurons shows that CNTF-STAT3 signaling leads to microtubule stabilization in axons as well as improving anterograde and retrograde mobility of axonal mitochondria. Interestingly, I additionally found that an acute application of CNTF increases the membrane potential of axonal mitochondria that is accompanied with a rise of ATP levels in pmn mutant and wildtype motoneurons. Unexpectedly, I found STAT3 phosphorylated on serine 727 co-localizing with mitochondria after CNTF application. These results demonstrate that multiple local targets of STAT3 exist in axons that modulate structure and function of microtubules and mitochondria. KW - Motoneuron KW - Myatrophische Lateralsklerose KW - CNTF KW - STAT3 KW - axonaler Transport KW - Motoneuronenerkrankung KW - Maus KW - Ciliary neurotrophic factor KW - Amyotrophe Lateralsklerose Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121065 ER - TY - THES A1 - Bender, Florian Lothar Paul T1 - Aufklärung des Pathomechanismus bei der pmn-Mausmutante, einem Mausmodell für Motoneuronerkrankungen T1 - Pathomechanisms in pmn-mice, a model for motoneuron diseases. N2 - Die pmn-Maus dient als Modell für degenerative Motoneuronerkrankungen: Während heterozygote Mäuse klinisch unauffällig sind, entwickeln homozygote einige Anzeichen, wie man sie auch bei humanen Motoneuronerkrankungen findet. Ab der 2. postnatalen Woche weisen sie eine progrediente Schwäche der Hinterläufe auf. Innerhalb kurzer Zeit sind auch andere Muskelgruppen betroffen, was zwischen der 4. und 6. postnatalen Woche zum Tod durch Atemversagen führt. Verantwortlich für die Erkrankung der pmn-Mäuse ist eine Punktmutation im Tubulin-spezifischen Chaperon E (tbce) Gen, die zu einem Aminosäureaustausch an einer evolutionär konservierten Aminosäure im TBCE-Protein führt. TBCE wird ubiquitär exprimiert und spielt eine Rolle bei der Assemblierung der Mikrotubuli. Phänotypisch sind von der Mutation spezifisch Motoneurone betroffen. Nach der Herstellung und Charakterisierung eines Antiserums gegen TBCE war es möglich, nach Unterschieden zwischen pmn-mutierten und wildtypischen Motoneuronen hinsichtlich der Stabilität und der subzellulären Lokalisation des TBCE Proteins zu suchen. Western Blot Analysen mit Rückenmarkslysaten von vier Wochen alten pmn-Mäusen zeigen eine deutliche Reduktion der TBCE-Expression. Mittels Immunfluoreszenz waren in isolierten embryonalen Motoneuronen indes keine Unterschiede hinsichtlich der Expressionsstärke und der subzellulären Lokalisation festzustellen. Das TBCE-Protein wird überwiegend im Zellsoma exprimiert und befindet sich dort im Golgi-Apparat und an den Centrosomen, die als Generatoren der axonalen Mikrotubuli angesehen werden. Obwohl mittels Immunfluoreszenz zu diesem Zeitpunkt keine Unterschiede detektierbar sind, weisen die pmn-mutierten Motoneurone nach sieben Tagen in Kultur einige axonale Pathologien auf, wenn sie in Gegenwart des neurotrophen Faktors BDNF kultiviert werden: Das Längenwachstum der Axone ist deutlich reduziert und entlang der Axone finden sich zahlreiche axonale Schwellungen mit Proteinaggregaten. Elektronenmikroskopisch findet sich eine Reduktion der Mikrotubulianzahl im proximalen Axonabschnitt, während die medialen und distalen Teile eine unveränderte Anzahl an Mikrotubuli aufweisen. Parallel findet sich in allen Axonabschnitten der pmn-mutierten Motoneurone eine deutliche Zunahme an Neurofilamenten. Neben den morphologischen Veränderungen weisen die Motoneurone aus pmn-Mäusen zu diesem Zeitpunkt auch eine Störung im axonalen Transport der Mitochondrien auf, die in den Axonen saltatorisch und bidirektional entlang von Mikrotubuli transportiert werden, auf. So ist die Anzahl stationärer Mitochondrien in pmn-mutierten Motoneuronen signifikant erhöht, während die Anzahl an transportierten Mitochondrien und deren maximale Transportgeschwindigkeit reduziert ist. Die morphologischen Veränderungen und die Störungen im axonalen Transport können kompensiert werden, wenn die pmn-mutierten Motoneurone statt mit BDNF mit dem neurotrophen Faktor CNTF kultiviert werden. Die Effekte von CNTF auf das Längenwachstum der Axone ist STAT3 vermittelt, da pmn-mutierte Motoneurone mit einer STAT3-Defizienz keine Reaktion mehr auf die Gabe von CNTF zeigen. Da STAT3 direkt mit Stathmin interagieren kann und dessen destabilisierende Wirkung auf Mikrotubuli dadurch verhindert, wurde angenommen, dass die STAT3 vermittelten CNTF Effekte auf eine lokale Wirkung von STAT3 in Axonen zurückzuführen ist. Diese Hypothese wird dadurch gestützt, dass die Herunterregulation der Stathmin Expression in pmn-mutierten Motoneuronen den gleichen Effekt auf das Längenwachstum zeigt, wie eine CNTF Gabe während der Kultivierung. N2 - Pmn-mice are used as a model for neurodegenerative motoneurondisease: Whereas heterozygous mice are clinically normal, homozygous mutant mice exhibit many features, which are also observed in human motoneuron disease. The pmn-mice develop normally until the second postnatal week. Then they show weakness of the hind limbs, which rapidly progresses. Within a short time, also other muscle groups are involved, ultimately leading to death of the animals in the 4th to 6th week after birth. The underlying gene defect was found as a point mutation in the tubulin-specific chaperon E (TBCE) gene, which leads to a single amino acid exchange at an evolutionary highly conserved amino acid in TBCE protein. TBCE is ubiquitously expressed and plays a role in microtubule assembly. However, motoneurons are specifically affected and seem to be more vulnerable. After generating an antiserum against TBCE, differences between motoneurons from pmn-mutant mice and control animals with regard to stability and subcellular localization of TBCE protein were analysed. Western blot analysis with lysates of spinal cord from 4 week old pmn-mice showed a reduction of TBCE protein expression. There were no differences in TBCE expression observed in immunocytochemistry with isolated embryonic motoneurons of pmn mice compared to wildtype mice: Neither the protein levels nor the subcellular distribution is altered. There is a strong TBCE immunoreactivity in cell soma of motoneurons, where TBCE is located in Golgi apparatus and at the centrosomes, where axonal microtubules are generated. Even there are no differences of TBCE expression at this time point, there are different axonal pathologies detectable: axon length of 7 days cultured motoneurons is significantly reduced and axonal swellings are visible when motoneurons are cultured with the neurotrophic factor BDNF. The number of microtubules is reduced in proximal parts of the axon and in parallel there is an increase of neurofilaments in all axonal parts, which was detectable by electron microscopy. Apart from the morphological changes in pmn-mutant motoneurons there is a disturbance of axonal transport of mitochondria, which are transported in axons in a saltatory and bidirectional manner along microtubules. In motoneurons from pmn-mice the number of stationary mitochondria is significantly increased and in parallel the number of transported mitochondria as well as their maximum velocity is reduced. Both, the morphological changes as well as the disturbance of axonal transport in pmn-mutant motoneurons can be rescued by treatment with the growth factor CNTF. The effects of CNTF on axonal outgrowth is mediated by STAT3, because rescue of CNTF to axon length is absent in pmn-mutant motoneurons lacking STAT3 expression. It is known that STAT3 can directly interact with stathmin, a regulator of microtubule dynamics. This interaction prevents the microtubule destabilizing activity of stahmin. So we assummed, that the STAT3 mediated effects of CNTF treatment are caused by local mechanisms in the axons. In deed, a shRNA downregulation of stathmin in pmn-mutated motoneurons cultured with BDNF has the same effects like treatment with CNTF. KW - Motoneuronerkrankung KW - pmn-Maus KW - TBCE KW - STAT3 KW - Stathmin KW - motoneuron disease KW - pmn KW - TBCE KW - STAT3 KW - stathmin Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-23711 ER -