TY - JOUR A1 - Allert, Stefanie A1 - Förster, Toni M. A1 - Svensson, Carl-Magnus A1 - Richardson, Jonathan P. A1 - Pawlik, Tony A1 - Hebecker, Betty A1 - Rudolphi, Sven A1 - Juraschitz, Marc A1 - Schaller, Martin A1 - Blagojevic, Mariana A1 - Morschhäuser, Joachim A1 - Figge, Marc Thilo A1 - Jacobsen, Ilse D. A1 - Naglik, Julian R. A1 - Kasper, Lydia A1 - Mogavero, Selene A1 - Hube, Bernhard T1 - \(Candida\) \(albicans\)-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers JF - mBio N2 - Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin. IMPORTANCE Candida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer. KW - Candida albicans KW - candidalysin KW - host cell damage KW - host cell invasion KW - intestinal barrier KW - necrosis KW - translocation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221084 VL - 9 IS - 3 ER - TY - JOUR A1 - Bar-Yosef, Hagit A1 - Gildor, Tsvia A1 - Ramírez-Zavala, Bernardo A1 - Schmauch, Christian A1 - Weissman, Ziva A1 - Pinsky, Mariel A1 - Naddaf, Rawi A1 - Morschhäuser, Joachim A1 - Arkowitz, Robert A. A1 - Kornitzer, Daniel T1 - A global analysis of kinase function in Candida albicans hyphal morphogenesis reveals a role for the endocytosis regulator Akl1 JF - Frontiers in Cellular and Infection Microbiology N2 - The human pathogenic fungus Candida albicans can switch between yeast and hyphal morphologies as a function of environmental conditions and cellular physiology. The yeast-to-hyphae morphogenetic switch is activated by well-established, kinase-based signal transduction pathways that are induced by extracellular stimuli. In order to identify possible inhibitory pathways of the yeast-to-hyphae transition, we interrogated a collection of C. albicans protein kinases and phosphatases ectopically expressed under the regulation of the TETon promoter. Proportionately more phosphatases than kinases were identified that inhibited hyphal morphogenesis, consistent with the known role of protein phosphorylation in hyphal induction. Among the kinases, we identified AKL1 as a gene that significantly suppressed hyphal morphogenesis in serum. Akl1 specifically affected hyphal elongation rather than initiation: overexpression of AKL1 repressed hyphal growth, and deletion of AKL1 resulted in acceleration of the rate of hyphal elongation. Akl1 suppressed fluid-phase endocytosis, probably via Pan1, a putative clathrin-mediated endocytosis scaffolding protein. In the absence of Akl1, the Pan1 patches were delocalized from the sub-apical region, and fluid-phase endocytosis was intensified. These results underscore the requirement of an active endocytic pathway for hyphal morphogenesis. Furthermore, these results suggest that under standard conditions, endocytosis is rate-limiting for hyphal elongation. KW - hyphae KW - endocytosis KW - Pan1 KW - functional genomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197204 SN - 2235-2988 VL - 8 ER - TY - JOUR A1 - Balasubramanian, Srikkanth A1 - Skaf, Joseph A1 - Holzgrabe, Ulrike A1 - Bharti, Richa A1 - Förstner, Konrad U. A1 - Ziebuhr, Wilma A1 - Humeida, Ute H. A1 - Abdelmohsen, Usama R. A1 - Oelschlaeger, Tobias A. T1 - A new bioactive compound from the marine sponge-derived Streptomyces sp. SBT348 inhibits staphylococcal growth and biofilm formation JF - Frontiers in Microbiology N2 - Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs. KW - marine sponges KW - Streptomyces KW - Staphylococci KW - device-related infections KW - bioassay-guided fractionation KW - transcriptome Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221408 VL - 9 ER - TY - THES A1 - Hampe, Irene Aurelia Ida T1 - Analysis of the mechanism and the regulation of histatin 5 resistance in \(Candida\) \(albicans\) T1 - Analyse des Mechanismus und der Regulierung von Histatin 5 Resistenz in \(Candida\) \(albicans\) N2 - Antimycotics such as fluconazole are frequently used to treat C. albicans infections of the oral mucosa. Prolonged treatment of the fungal infection with fluconazole pose a risk to resistance development. C. albicans can adapt to these stressful environmental changes by regulation of gene expression or by producing genetically altered variants that arise in the population. Adapted variants frequently carry activating mutations in zinc cluster transcription factors, which cause the upregulation of their target genes, including genes encoding efflux pumps that confer drug resistance. MDR1, regulated by the zinc cluster transcription factor Mrr1, as well as CDR1 and CDR2, regulated by the zinc cluster transcription factor Tac1, are well-known examples of genes encoding efflux pumps that extrude the antimycotic fluconazole from the fungal cell and thus contribute to the survival of the fungus. In this study, it was investigated if C. albicans can develop resistance to the antimicrobial peptide histatin 5, which serves as the first line of defence in the oral cavity of the human host. Recently, it was shown that C. albicans transports histatin 5 outside of the Candia cell via the efflux pump Flu1. As efflux pumps are often regulated by zinc cluster transcription factors, the Flu1 efflux pump could also be regulated by a zinc cluster transcription factor which could in a hyperactive form upregulate the expression of the efflux pump, resulting in increased export of histatin 5 and consequently in histatin 5 resistance. In order to find a zinc cluster transcription factor that upregulates FLU1 expression, a comprehensive library of C. albicans strains containing artificially activated forms of zinc cluster transcription factors was screened for suitable candidates. The screening was conducted on medium containing mycophenolic acid because mycophenolic acid is also a substrate of Flu1 and a strain expressing a hyperactive zinc cluster transcription factor that upregulates FLU1 expression should exhibit an easily recognisable mycophenolic acid-resistant phenotype. Further, FACS analysis, quantitative real-time RT-PCR analysis, broth microdilution assays as well as histatin 5 assays were conducted to analyse the mechanism and the regulation of histatin 5 resistance. Several zinc cluster transcription factors caused mycophenolic acid resistance and upregulated FLU1 expression. Of those, only hyperactive Mrr1 was able to confer increased histatin 5 resistance. Finding Mrr1 to confer histatin 5 resistance was highly interesting as fluconazole-resistant strains with naturally occurring Mrr1 gain of function mutations exist, which were isolated from HIV-infected patients with oral candidiasis. These Mrr1 gain of function mutations as well as artificially activated Mrr1 cause fluconazole resistance by upregulation of the efflux pump MDR1 and other target genes. In the course of the study, it was found that expression of different naturally occurring MRR1 gain-of-function mutations in the SC5314 wild type background caused increased FLU1 expression and increased histatin 5 resistance. The same was true for fluconazole-resistant clinical isolates with Mrr1 gain of function mutations, which also caused the overexpression of FLU1. Those cells were less efficiently killed by histatin 5 dependent on Mrr1. Surprisingly, FLU1 contributed only little to histatin 5 resistance, rather, overexpression of MDR1 mainly contributed to the Mrr1-mediated histatin 5 resistance, but also additional Mrr1-target genes were involved. These target genes are yet to be uncovered. Moreover, if a link between the yet unknown Mrr1-target genes contributing to fluconazole resistance and increased histatin 5 resistance can be drawn remains to be discovered upon finding of the responsible target genes. Collectively, this study contributes to the understanding of the impact of prolonged antifungal exposure on the interaction between host and fungus. Drug therapy can give rise to resistance evolution resulting in strains that have not only developed resistance to fluconazole but also to an innate host mechanism, which allows adaption to the host niche even in the absence of the drug. N2 - Antimykotika wie Fluconazol werden häufig zur Behandlung von C. albicans Infektionen der Mundschleimhaut verwendet. Dabei stellt eine langzeitige Behandlung der Pilzinfektion mit Fluconazol ein Risiko zur Resistenzentwicklung dar. C. albicans kann sich an solche Umweltveränderungen anpassen, indem es die Genexpression reguliert oder genetisch veränderte Varianten produziert, welche in der Population entstehen. Adaptierte Varianten tragen häufig aktivierende Mutationen in Zink-Cluster-Transkriptionsfaktoren, welche die Hochregulierung der Expression von Genen verursachen, darunter solche, die für Multidrug-Effluxpumpen kodieren und dadurch Antimykotikaresistenz verleihen können. MDR1, reguliert durch den Zink-Cluster-Transkriptionsfaktor Mrr1, sowie CDR1 und CDR2, reguliert durch den Zink-Cluster-Transkriptionsfaktor Tac1, sind bekannte Beispiele für Effluxpumpen, die das Antimykotikum Fluconazol aus der Pilzzelle extrudieren und somit zum Überleben der Pilzzelle beitragen. In dieser Arbeit wurde untersucht, ob C. albicans eine Resistenz gegen das antimikrobielle Peptid Histatin 5 entwickeln kann, das in der Mundhöhle des menschlichen Wirtes als erste Verteidigungsbarriere gegen den Pilz dient. Kürzlich wurde gezeigt, dass C. albicans Histatin 5 über die Effluxpumpe Flu1 aus der Candia-Zelle heraustransportiert (Li et al., 2013). Da Effluxpumpen häufig durch Zink-Cluster-Transkriptionsfaktoren reguliert werden, könnte auch die Flu1-Effluxpumpe durch solch einen Transkriptionsfaktor reguliert werden, der in einer hyperaktiven Form die Expression der Effluxpumpe hochregulieren könnte, was wiederrum zu einem erhöhten Export von Histatin 5 und folglich zur Histatin 5 Resistenz führen könnte. Um einen Zink-Cluster-Transkriptionsfaktor zu finden, der die FLU1-Expression hochreguliert, wurde mit Hilfe einer Bibliothek von C. albicans-Stämmen, die künstlich aktivierte Formen von Zink-Cluster-Transkriptionsfaktoren enthält, nach geeigneten Kandidaten gesucht. Das Screening wurde auf Mycophenolsäure-haltigem Medium durchgeführt, da Mycophenolsäure ebenfalls ein Substrat von Flu1 ist. Folglich sollte ein Stamm mit hyperaktivem Zink-Cluster-Transkriptionsfaktor, welcher die FLU1-Expression hochreguliert, einen leicht erkennbaren Mycophenolsäure-resistenten Phänotyp aufweisen. Weiterhin wurden FACS-Analysen, quantitative real-time RT-PCR-Analysen, Broth microdilution-Assays sowie Histatin 5-Assays durchgeführt, um den Mechanismus und die Regulierung der Histatin-5-Resistenz zu analysieren. Mehrere Zink-Cluster-Transkriptionsfaktoren verursachten Mycophenolsäure-Resistenz und erhöhten die FLU1-Expression. Von diesen war nur hyperaktives Mrr1 in der Lage, eine erhöhte Histatin-5-Resistenz zu verleihen. Das Auffinden von Mrr1 als Regulator der Histatin 5-Resistenz war hochinteressant, da fluconazolresistente Stämme mit natürlich vorkommenden MRR1 gain-of-function Mutationen existieren, die aus HIV-infizierten Patienten mit oropharyngealer Candidiasis isoliert wurden. Diese gain-of-function Mutationen sowie künstlich aktivierendes Mrr1 verursachen Fluconazol-Resistenz durch Hochregulation der Effluxpumpe MDR1 und anderer Zielgene. Im Verlauf der Studie wurde herausgefunden, dass verschiedene natürlich vorkommende MRR1 gain-of-function Mutationen im SC5314 Wildtyp Hintergrund eine erhöhte FLU1-Expression und eine erhöhte Histatin-5-Resistenz verursachten. Das Gleiche galt für Fluconazol-resistente klinische Isolate mit Mrr1 gain-of-function Mutationen, welche die Überexpression von FLU1 verursachten. Zellen dieser Isolate wurden, abhängig von Mrr1, weniger wirksam durch Histatin 5 abgetötet. Überraschenderweise trug FLU1 nur wenig zur Histatin-5-Resistenz bei, vielmehr trug die Überexpression von MDR1 hauptsächlich zur Mrr1-vermittelten Histatin-5-Resistenz bei, aber auch weitere Mrr1-Zielgene waren daran beteiligt. Diese Mrr1-Zielgene gilt es nun noch zu entdecken. Ob ein Zusammenhang zwischen diesen noch unbekannten Mrr1-Zielgenen hergestellt werden kann, die zur Fluconazolresistenz sowie zu einer erhöhten Histatin-5-Resistenz beitragen, wird erst nach dem Auffinden der verantwortlichen Zielgene geprüft werden können. Zusammenfassend trägt diese Studie zum Verständnis der Auswirkungen einer anhaltenden antimykotischen Exposition auf die Interaktion zwischen Wirt und Pilz bei. Eine medikamentöse Therapie kann zu einer Resistenzentwicklung führen, aus der Stämme hervorgehen, welche nicht nur eine Resistenz gegen Fluconazol entwickelt haben, sondern gleichzeitig eine Resistenz gegen einen angeborenen Wirtsabwehrmechanismus, der eine Adaption an die Wirtsnische auch in Abwesenheit des Antimykotikums ermöglicht. KW - Histatin 5 KW - Candida albicans KW - Efflux pump KW - MDR1 KW - MRR1 KW - Mrr1 KW - MDR1 KW - Fluconazole KW - Efflux pump Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-159634 ER - TY - JOUR A1 - Yu, Sung-Huan A1 - Vogel, Jörg A1 - Förstner, Konrad U. T1 - ANNOgesic: a Swiss army knife for the RNA-seq based annotation of bacterial/archaeal genomes JF - GigaScience N2 - To understand the gene regulation of an organism of interest, a comprehensive genome annotation is essential. While some features, such as coding sequences, can be computationally predicted with high accuracy based purely on the genomic sequence, others, such as promoter elements or noncoding RNAs, are harder to detect. RNA sequencing (RNA-seq) has proven to be an efficient method to identify these genomic features and to improve genome annotations. However, processing and integrating RNA-seq data in order to generate high-resolution annotations is challenging, time consuming, and requires numerous steps. We have constructed a powerful and modular tool called ANNOgesic that provides the required analyses and simplifies RNA-seq-based bacterial and archaeal genome annotation. It can integrate data from conventional RNA-seq and differential RNA-seq and predicts and annotates numerous features, including small noncoding RNAs, with high precision. The software is available under an open source license (ISCL) at https://pypi.org/project/ANNOgesic/. KW - genome annotation KW - RNA-seq KW - transcriptomics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-178942 VL - 7 ER - TY - THES A1 - Lerch, Maike Franziska T1 - Characterisation of a novel non-coding RNA and its involvement in polysaccharide intercellular adhesin (PIA)-mediated biofilm formation of \(Staphylococcus\) \(epidermidis\) T1 - Charakterisierung einer neuen nicht-kodierenden RNA und deren Beteiligung an der PIA-vermittelten Biofilmbildung von \(Staphylococcus\) \(epidermidis\) N2 - Coagulase-negative staphylococci, particularly Staphylococcus epidermidis, have been recognised as an important cause of health care-associated infections due to catheterisation, and livestock-associated infections. The colonisation of indwelling medical devices is achieved by the formation of biofilms, which are large cell-clusters surrounded by an extracellular matrix. This extracellular matrix consists mainly of PIA (polysaccharide intercellular adhesin), which is encoded by the icaADBC-operon. The importance of icaADBC in clinical strains provoking severe infections initiated numerous investigations of this operon and its regulation within the last two decades. The discovery of a long transcript being located next to icaADBC, downstream of the regulator gene icaR, led to the hypothesis of a possible involvement of this transcript in the regulation of biofilm formation (Eckart, 2006). Goal of this work was to characterise this transcript, named ncRNA IcaZ, in molecular detail and to uncover its functional role in S. epidermidis. The ~400 nt long IcaZ is specific for ica-positive S. epidermidis and is transcribed in early- and mid-exponential growth phase as primary transcript. The promotor sequence and the first nucleotides of icaZ overlap with the 3' UTR of the preceding icaR gene, whereas the terminator sequence is shared by tRNAThr-4, being located convergently to icaZ. Deletion of icaZ resulted in a macroscopic biofilm-negative phenotype with highly diminished PIA-biofilm. Biofilm composition was analysed in vitro by classical crystal violet assays and in vivo by confocal laser scanning microscopy under flow conditions to display biofilm formation in real-time. The mutant showed clear defects in initial adherence and decreased cell-cell adherence, and was therefore not able to form a proper biofilm under flow in contrast to the wildtype. Restoration of PIA upon providing icaZ complementation from plasmids revealed inconsistent results in the various mutant backgrounds. To uncover the functional role of IcaZ, transcriptomic and proteomic analysis was carried out, providing some hints on candidate targets, but the varying biofilm phenotypes of wildtype and icaZ mutants made it difficult to identify direct IcaZ mRNA targets. Pulse expression of icaZ was then used as direct fishing method and computational target predictions were executed with candidate mRNAs from aforesaid approaches. The combined data of these analyses suggested an involvement of icaR in IcaZ-mediated biofilm control. Therefore, RNA binding assays were established for IcaZ and icaR mRNA. A positive gel shift was maintained with icaR 3' UTR and with 5'/3' icaR mRNA fusion product, whereas no gel shift was obtained with icaA mRNA. From these assays, it was assumed that IcaZ regulates icaR mRNA expression in S. epidermidis. S. aureus instead lacks ncRNA IcaZ and its icaR mRNA was shown to undergo autoregulation under so far unknown circumstances by intra- or intermolecular binding of 5' UTR and 3' UTR (Ruiz de los Mozos et al., 2013). Here, the Shine-Dalgarno sequence is blocked through 5'/3' UTR base pairing and RNase III, an endoribonuclease, degrades icaR mRNA, leading to translational blockade. In this work, icaR mRNA autoregulation was therefore analysed experimentally in S. epidermidis and results showed that this specific autoregulation does not take place in this organism. An involvement of RNase III in the degradation process could not be verified here. GFP-reporter plasmids were generated to visualise the interaction, but have to be improved for further investigations. In conclusion, IcaZ was found to interact with icaR mRNA, thereby conceivably interfering with translation initiation of repressor IcaR, and thus to promote PIA synthesis and biofilm formation. In addition, the environmental factor ethanol was found to induce icaZ expression, while only weak or no effects were obtained with NaCl and glucose. Ethanol, actually is an ingredient of disinfectants in hospital settings and known as efficient effector for biofilm induction. As biofilm formation on medical devices is a critical factor hampering treatment of S. epidermidis infections in clinical care, the results of this thesis do not only contribute to better understanding of the complex network of biofilm regulation in staphylococci, but may also have practical relevance in the future. N2 - Koagulase-negative Staphylokokken besiedeln die menschliche und tierische Haut, sowie die Schleimhäute. Durch Läsionen oder das Einbringen von medizinischen Instrumenten wie Kathetern gelangen sie in tiefere Hautschichten oder die Blutbahn und können dort schwerwiegende Infektionen auslösen, vor Allem bei Risikopersonen. Besonders Staphylococcus epidermidis hat sich als Verursacher von nosokomialen Infektionen, aber auch als Pathogen in der Tierhaltung etabliert. Die Bakterien bilden bei der Besiedlung sogenannte Biofilme aus (d.h. eine Akkumulation der Keime, die von einer extrazellulären Matrix umgeben sind). Diese Matrix besteht neben Proteinen und eDNA hauptsächlich aus einem Polysaccharid, dem interzellulären Adhäsin PIA (engl.: polysaccharide intercellular adhesin). Dieses wird durch die Ica-Proteine synthetisiert, die im icaADBC-Operon (engl.: intercellular adhesin operon) kodiert sind. Das Operon hat große Bedeutung in klinischen Stämmen und wurde daher innerhalb der letzten beiden Jahrzehnte eingehend untersucht, auch im Hinblick auf seine Regulation. In der unmittelbaren Umgebung des icaADBC-Operons, stromabwärts des icaR Gens, das für den Repressor des ica-Operons (IcaR) kodiert, wurde ein großes Transkript identifiziert, von dem vermutet wird, dass es möglicherweise an der Regulation der Biofilmbildung beteiligt ist (Eckart, 2006). Ziel dieser Arbeit war es, dieses Transkript zu charakterisieren und seine Funktion in S. epidermidis aufzudecken. Die nicht-kodierende RNA, genannt IcaZ, hat eine Länge von ~400 nt und ist spezifisch für ica-positive S. epidermidis. Sie wird in der frühen bis mittleren exponentiellen Phase temperaturabhängig exprimiert. Stromaufwärts überlappt das icaZ-Gen und dessen Promotor mit der 3' UTR vom icaR-Gen. Stromabwärts wird das icaZ-Gen vom einem Transkriptionsterminator begrenzt, der auch für das tRNAThr-4-Gen benutzt wird, das auf dem gegenüberliegenden Strang in Richtung des icaZ-Gens lokalisiert ist. Die Deletion der RNA führte zu einem makroskopisch sichtbaren Biofilm-negativen Phänotyp mit deutlich verminderter PIA Bildung. Die Biofilmzusammensetzung wurde in vitro mittels eines klassischen Kristallviolett-Assays gemessen und die Biofilmbildung in vivo in Echtzeit mittels konfokaler Mikroskopie (CLSM) betrachtet. Dabei wurde mit einer peristaltischen Pumpe ein Mediumfluss appliziert. Die Mutante zeigte klare Defekte in der initialen Adhärenz und in der Zell-Zell Adhäsion. Sie bildete im Gegensatz zum Wildtyp keinen strukturierten Biofilm aus. Zur Komplementierung des Biofilms wurde die IcaZ von einem Plasmid exprimiert und die Biofilmzusammensetzung nach 18-20 Stunden Wachstum gemessen. Die Ergebnisse dieser Untersuchungen in den verschiedenen Mutanten waren nicht eindeutig. Um die Funktion von IcaZ aufzudecken, wurden Transkriptom- und Proteomvergleiche zwischen Wildtyp und Mutante gemacht. Diese lieferten einige Hinweise, aber da der metabolische Unterschied eines Biofilmbildners zu einem Nicht-Biofilmbildner zu groß war, wurde eine direktere Methode angewandt, die induzierte Expression (Pulsexpression). Zudem wurden potentielle Interaktionspartner der IcaZ mittels computer-basierter Bindungsvorhersagen analysiert. Die icaR mRNA kristallisierte sich dabei als Target heraus und die Interaktion zwischen IcaZ und icaR mRNA wurde mit Gelshift-Assays (EMSA) untersucht. Eine Bandenverschiebung wurde mit icaR 3' UTR und mit dem icaR-5'-3' UTR-Fusionsprodukt detektiert, wohingegen keine Interaktion zwischen IcaZ und icaA mRNA stattfand. Aufgrund dieser Assays wurde vermutet, dass IcaZ die Translation von icaR in S. epidermidis reguliert. In S. aureus fehlt die nicht-kodierende RNA IcaZ und für icaR mRNA wurde eine Autoregulation gezeigt, bei der die icaR 5' UTR mit der icaR 3' UTR intramolekular oder intermolekular durch Basenpaarung interagiert, wodurch die Shine-Dalgarno Sequenz blockiert wird und es aufgrund dessen zu einer Hemmung der Translation kommt. Die Umweltfaktoren, die dazu führen sind bisher unbekannt. Der Komplex wird durch eine Endoribonuklease, RNase III, abgebaut (Ruiz de los Mozos et al., 2013). In S. epidermidis wurde eine solche Interaktion theoretisch ausgeschlossen. Experimentelle Analysen dieser Arbeit haben gezeigt, dass diese Autoregulation in S. epidermidis nicht stattfinden kann und es wird angenommen, dass IcaZ diese Regulation übernimmt. Um die Interaktion zu visualisieren wurden GFP-Reporter Plasmide generiert, die aber für weitere Experimente noch zu verbessern sind. Zusammenfassend lässt sich sagen, dass IcaZ mit der icaR mRNA interagiert, was höchstwahrscheinlich zu einer Hemmung der Translation des Repressors IcaR führt und damit letztlich PIA-Synthese und Biofilmbildung positiv reguliert. Zusätzlich wurde gefunden, dass Ethanol die Expression der IcaZ-RNA induziert, während NaCl nur schwache Effekte zeigte und Glucose keinen Einfluss auf die Expression von icaZ hatte. Ethanol ist ein Bestandteil von Desinfektionsmitteln, die in Krankenhäusern verwendet werden und ist bekannt dafür Biofilmbildung auszulösen. Da die Bildung von Biofilmen auf medizinischen Geräten kritisch ist und diese die Behandlung von S. epidermidis Infektionen erschweren, tragen die Ergebnisse dieser Arbeit nicht nur zu einem besseren Verständnis des komplexen Netzwerks der Biofilmregulation bei, sondern haben möglicherweise auch praktischen Nutzen in der Zukunft. KW - Biofilm KW - Staphylococcus epidermidis KW - Non-coding RNA KW - Hospitalismus KW - icaADBC KW - Nosocomial Infections KW - Polysaccharide intercellular adhesin (PIA) KW - Biofilm formation KW - non-coding RNA KW - ncRNA KW - Nosokomiale Infektionen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-155777 ER - TY - JOUR A1 - Bruchhagen, Christin A1 - Jarick, Marcel A1 - Mewis, Carolin A1 - Hertlein, Tobias A1 - Niemann, Silke A1 - Ohlsen, Knut A1 - Peters, Georg A1 - Planz, Oliver A1 - Ludwig, Stephan A1 - Ehrhardt, Christina T1 - Metabolic conversion of CI-1040 turns a cellular MEK-inhibitor into an antibacterial compound JF - Scientific Reports N2 - Influenza virus (IV) infections cause severe respiratory illnesses that can be complicated by bacterial super-infections. Previously, we identified the cellular Raf-MEK-ERK cascade as a promising antiviral target. Inhibitors of MEK, such as CI-1040, showed potent antiviral activity. However, it remained unclear if this inhibitor and its active form, ATR-002, might sensitize host cells to either IV or secondary bacterial infections. To address these questions, we studied the anti-pathogen activity of ATR-002 in comparison to CI-1040, particularly, its impact on Staphylococcus aureus (S. aureus), which is a major cause of IV super-infections. We analysed IV and S. aureus titres in vitro during super-infection in the presence and absence of the drugs and characterized the direct impact of ATR-002 on bacterial growth and phenotypic changes. Importantly, neither CI-1040 nor ATR-002 treatment led to increased bacterial titres during super-infection, indicating that the drug does not sensitize cells for bacterial infection. In contrast, we rather observed reduced bacterial titres in presence of ATR-002. Surprisingly, ATR-002 also led to reduced bacterial growth in suspension cultures, reduced stress- and antibiotic tolerance without resistance induction. Our data identified for the first time that a particular MEK-inhibitor metabolite exhibits direct antibacterial activity, which is likely due to interference with the bacterial PknB kinase/Stp phosphatase signalling system. KW - antimicrobials KW - pathogens Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221648 VL - 8 ER - TY - JOUR A1 - Förstner, Konrad U A1 - Reuscher, Carina M A1 - Haberzettl, Kerstin A1 - Weber, Lennart A1 - Klug, Gabriele T1 - RNase E cleavage shapes the transcriptome of Rhodobacter sphaeroides and strongly impacts phototrophic growth JF - Life Science Alliance N2 - Bacteria adapt to changing environmental conditions by rapid changes in their transcriptome. This is achieved not only by adjusting rates of transcription but also by processing and degradation of RNAs. We applied TIER-Seq (transiently inactivating an endoribonuclease followed by RNA-Seq) for the transcriptome-wide identification of RNase E cleavage sites and of 5′ RNA ends, which are enriched when RNase E activity is reduced in Rhodobacter sphaeroides. These results reveal the importance of RNase E for the maturation and turnover of mRNAs, rRNAs, and sRNAs in this guanine-cytosine-rich α-proteobacterium, some of the latter have well-described functions in the oxidative stress response. In agreement with this, a role of RNase E in the oxidative stress response is demonstrated. A remarkably strong phenotype of a mutant with reduced RNase E activity was observed regarding the formation of photosynthetic complexes and phototrophic growth, whereas there was no effect on chemotrophic growth. KW - Rhodobacter sphaeroides KW - phototrophic growth KW - RNase E Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177139 VL - 1 IS - 4 ER - TY - JOUR A1 - Sanyal, Anirban A1 - Wallaschek, Nina A1 - Glass, Mandy A1 - Flamand, Louis A1 - Wight, Darren J. A1 - Kaufer, Benedikt B. T1 - The ND10 Complex Represses Lytic Human Herpesvirus 6A Replication and Promotes Silencing of the Viral Genome JF - Viruses N2 - Human herpesvirus 6A (HHV-6A) replicates in peripheral blood mononuclear cells (PBMCs) and various T-cell lines in vitro. Intriguingly, the virus can also establish latency in these cells, but it remains unknown what influences the decision between lytic replication and the latency of the virus. Incoming virus genomes are confronted with the nuclear domain 10 (ND10) complex as part of an intrinsic antiviral response. Most herpesviruses can efficiently subvert ND10, but its role in HHV-6A infection remains poorly understood. In this study, we investigated if the ND10 complex affects HHV-6A replication and contributes to the silencing of the virus genome during latency. We could demonstrate that ND10 complex was not dissociated upon infection, while the number of ND10 bodies was reduced in lytically infected cells. Virus replication was significantly enhanced upon knock down of the ND10 complex using shRNAs against its major constituents promyelocytic leukemia protein (PML), hDaxx, and Sp100. In addition, we could demonstrate that viral genes are more efficiently silenced in the presence of a functional ND10 complex. Our data thereby provides the first evidence that the cellular ND10 complex plays an important role in suppressing HHV-6A lytic replication and the silencing of the virus genome in latently infected cells. KW - human herpesvirus 6 KW - ND10 complex KW - PML KW - lytic replication KW - latency KW - PML nuclear-bodies KW - gene-expression KW - virus-infection KW - in-vitro KW - DNA Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227337 VL - 10 IS - 8 ER - TY - JOUR A1 - Bury, Susanne A1 - Soundararajan, Manonmani A1 - Bharti, Richa A1 - von Bünau, Rudolf A1 - Förstner, Konrad U. A1 - Oelschlaeger, Tobias A. T1 - The probiotic escherichia coli strain Nissle 1917 combats lambdoid bacteriophages stx and lambda JF - Frontiers in Microbiology N2 - Shiga toxin (Stx) producing E. coli (STEC) such as Enterohemorrhagic E. coli (EHEC) are the major cause of foodborne illness in humans. In vitro studies showed the probiotic Escherichia coil strain Nissle 1917 (EcN) to efficiently inhibit the production of Stx. Life threatening EHEC strains as for example the serotype 0104:H4, responsible for the great outbreak in 2011 in Germany, evolutionary developed from certain E. coll strains which got infected by stx2-encoding lambdoid phages turning the E. coil into lysogenic and subsequently Stx producing strains. Since antibiotics induce stx genes and Stx production, EHEC infected persons are not recommended to be treated with antibiotics. Therefore, EcN might be an alternative medication. However, because even commensal E. coli strains might be converted into Stx-producers after becoming host to a stx encoding prophage, we tested EcN for stx-phage genome integration. Our experiments revealed the resistance of EcN toward not only stx-phages but also against lambda-phages. This resistance was not based on the lack of or by mutated phage receptors. Rather it involved the expression of a phage repressor (pr) gene of a defective prophage in EcN which was able to partially protect E. coli K-12 strain MG1655 against stx and lambda phage infection. Furthermore, we observed EcN to inactivate phages and thereby to protect E. coli K-12 strains against infection by stx- as well as lambda-phages. Inactivation of lambda-phages was due to binding of lambda-phages to LamB of EcN whereas inactivation of stx-phages was caused by a thermostable protein of EcN. These properties together with its ability to inhibit Stx production make EcN a good candidate for the prevention of illness caused by EHEC and probably for the treatment of already infected people. KW - probiotic KW - E. coli Nissle 1917 KW - EHEC KW - Shiga toxin producing E. coli KW - stx-phages KW - lambda-phages KW - lambdoid prophage KW - LamB Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221960 VL - 9 ER - TY - JOUR A1 - Jarick, Marcel A1 - Bertsche, Ute A1 - Stahl, Mark A1 - Schultz, Daniel A1 - Methling, Karen A1 - Lalk, Michael A1 - Stigloher, Christian A1 - Steger, Mirco A1 - Schlosser, Andreas A1 - Ohlsen, Knut T1 - The serine/threonine kinase Stk and the phosphatase Stp regulate cell wall synthesis in Staphylococcus aureus JF - Scientific Reports N2 - The cell wall synthesis pathway producing peptidoglycan is a highly coordinated and tightly regulated process. Although the major components of bacterial cell walls have been known for decades, the complex regulatory network controlling peptidoglycan synthesis and many details of the cell division machinery are not well understood. The eukaryotic-like serine/threonine kinase Stk and the cognate phosphatase Stp play an important role in cell wall biosynthesis and drug resistance in S. aureus. We show that stp deletion has a pronounced impact on cell wall synthesis. Deletion of stp leads to a thicker cell wall and decreases susceptibility to lysostaphin. Stationary phase Δstp cells accumulate peptidoglycan precursors and incorporate higher amounts of incomplete muropeptides with non-glycine, monoglycine and monoalanine interpeptide bridges into the cell wall. In line with this cell wall phenotype, we demonstrate that the lipid II:glycine glycyltransferase FemX can be phosphorylated by the Ser/Thr kinase Stk in vitro. Mass spectrometric analyses identify Thr32, Thr36 and Ser415 as phosphoacceptors. The cognate phosphatase Stp dephosphorylates these phosphorylation sites. Moreover, Stk interacts with FemA and FemB, but is unable to phosphorylate them. Our data indicate that Stk and Stp modulate cell wall synthesis and cell division at several levels. KW - bacterial transcription KW - pathogens KW - cell wall synthesis Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177333 VL - 8 IS - 13693 ER -