TY - THES A1 - Augustin, Anne Marie T1 - Auswirkung der SPRED2-Defizienz auf die kardiale Funktion und Beeinflussung durch die Behandlung mit dem Aldosteronantagonisten Eplerenon T1 - Impact of SPRED2-deficiency on cardiac function and influence through treatment with aldosterone receptor antagonist eplerenone N2 - SPRED2 ist ein Inhibitor des Ras/ERK-MAPK-Signalwegs. Um die Folgen einer SPRED2-Defizienz zu erforschen, wurden im Rahmen vorheriger von Ullrich et al. durchgeführter Untersuchungen mittels Gene-Trap-Methode bereits mannigfaltige Auffälligkeiten im Phänotyp der SPRED2-Mäuse festgestellt. So zeigten die Tiere einen Hypochondroplasie-ähnlichen Zwergenwuchs, Verhaltensauffälligkeiten, einen krankhaft gesteigerten Wasserkonsum und nicht zuletzt eine deutlich reduzierte Lebenserwartung im Vergleich mit den WT-Tieren. Des Weiteren fielen erhöhte Aldosteronspiegel auf, die bei näheren Untersuchungen nicht einer erhöhten Aktivität des RAAS geschuldet zu sein schienen. Vielmehr zeigte sich eine deutlich erhöhte Aldosteron-Synthase-Expression in der Nebennierenrinde. Erste Hinweise darauf, dass die SPRED2-Defizienz auch Auswirkungen auf den kardiologischen Phänotyp haben könnte, ergaben sich bereits bei initialen Untersuchungen von Ullrich et al. So konnte bei den SPRED2-KO-Tieren neben hämodynamischer Auffälligkeiten eine gesteigerte Herz-Körpergewicht-Ratio festgestellt werden. Die im Rahmen dieses Folgeprojekts durchgeführten Untersuchungen sollten die Frage klären, ob die Defizienz des SPRED2-Gens Auswirkungen auf die Herzleistung hat und hierüber die verkürzte Lebenserwartung der KO-Tiere verschulden könnte. Hierfür wurden zunächst Untersuchungen der elektrischen kardialen Aktivität mittels EKG und Elektrophysiologischer Untersuchung durchgeführt. Die Ermittlung von Herzrhythmusstörung und die Quantifizierung derselben spielte hierbei eine besondere Rolle. Des Weiteren sollte mit der Durchführung von PSR-Färbungen zur Bestimmung des kardialen Kollagengehaltes histologischen Fragestellungen Rechnung getragen werden. Aufgrund des bereits aus den vorherigen Studien bekannten Hyperaldosteronismus der KO-Tiere stellte sich darüber hinaus die Frage, ob die im Rahmen der Studie feststellbaren kardiologischen Auffälligkeiten als Konsequenz der gesteigerten Aldosteronwerte, oder aber als direkte Folge des Genotyps gewertet werden müssen. Aus diesem Grund wurden alle oben genannten Untersuchungen mit Tieren, welche einer Behandlung mit dem Aldosteronantagonisten Eplerenon zugeführt worden waren, wiederholt. Bei der Auswertung der basalen Ruhe- und Stress-EKGs zeigten sich einige Parameter bei den KO-Tieren pathologisch verändert. So war das QRS-Intervall, als Korrelat zur intraventrikulären Überleitungszeit, bei den KO-Mäusen verlängert, im Stress-EKG waren darüber hinaus sowohl die Dauer der P-Welle als auch des PQ-Intervalls erhöht. Durch die Behandlung mit Aldosteron waren diese Unterschiede zwischen WT- und KO-Gruppe teilweise nicht mehr feststellbar. Das die atrioventrikuläre Überleitungszeit abbildende PQ-Intervall war sowohl im Vergleich mit dem behandelten WT, als auch mit dem unbehandelten WT nicht mehr signifikant erhöht. Auch die Länge des QRS-Komplexes näherte sich unter Eplerenon-Behandlung dem der unbehandelten WT-Tiere an und sank bei der Stress-EKG-Auswertung sogar unterhalb des Signifkanzniveaus. Bei der EKG-Analyse in Bezug auf Arrhythmien ergab sich bei Gegenüberstellung der basalen WT- und KO-Gruppe eine deutlich gesteigerte Vulnerabilität für Herzrhythmusstörungen bei den KO-Tieren. Durch die Behandlung mit Eplerenon konnte hierbei ein deutlicher Erfolg erzielt werden mit signifikanter Reduktion der Arrhythmieereignisse. Die elektrophysiologische Untersuchung ergab neben unauffälligen Parametern der Funktion des Sinusknotens und der AV-Überleitung ebenfalls Hinweise für eine gesteigerte Empfindlichkeit für Arrhythmien. Die durch EPU induzierten Arrhythmien zeigten sich durch Eplerenon-Behandlung gleichermaßen rückgängig. Mittels Kollagenfärbung konnte der initiale Verdacht, dass die SPRED2-KO-Tiere zu einer vermehrten kardialen Fibrosierung neigen, bestätigt werden. Dabei zeigte sich durch die Behandlung mit Eplerenon eine deutliche Beeinflussung und Reduktion des kardialen Kollagengehaltes. Insgesamt lässt sich schlussfolgern, dass die mannigfaltigen phänotypischen Effekte, die die SPRED2-Defizienz bedingt, nur teilweise dem Hyperaldosteronismus der Tiere geschuldet sind und durch therapeutische Einflussnahme auf diesen auch nur partiell kompensiert werden können. N2 - SPRED proteins are inhibitors of the Ras/ERK/MAPK signaling pathway, an evolutionary highly conserved and very widespread signaling cascade regulating cell proliferation, differentiation, and growth. To elucidate physiological consequences of SPRED2 deficiency, SPRED2 KO mice were generated by a gene trap approach and heart investigations were systematically performed. An initial phenotypical characterization in studies of Ullrich et al showed a hypochondroplasia-like dwarfism, abnormally high water uptakes, behavioural syndromes with excessive grooming and reduced survival times. Also, investigations revealed hyperaldosteronism in SPRED2 KO mice with doubled serum aldosterone as compared with WT mice. Systematic investigation of contributing upstream hormone axes demonstrated, that hyperaldosteronism developed independently of an overactivated Renin-Angiotensin system as indicated by halved serum Ang II levels in KO mice. However, aldosterone synthase expression in the adrenal gland was substantially augmented. First indications for cardiac pathologies in SPRED KO mice resulted from initial cardiac tests of Ullrich et al., revealing enlarged hearts with elevated heart weight/body weight ratios, as well as increased stroke volumes in KO mice. To investigate whether the cardiac phenotype and the reduced survival time is a consequence of the genotype or secondary due to hyperaldosteronism, electrocardiograms, electrophysiological studies, both with arrhythmia analysis, as well as PSR-stainings, were performed with untreated mice, as well as animals after eplerenone treatment. Some ECG-parameters showed significant differences, for example QRS-interval was prolonged in KO-mice, as correlation for ventricular conduction time. Under isoproterenol stimulation, p-wave duration as well as PQ-interval revealed to be extended. These differences showed to be reduced due to eplerenone treatment, in case of PQ-time and QRS-interval after isoproterenol stimulation, even in significant dimension. Concerning the arrhythmia analysis in ECG and EPU, results showed a distinctly increased vulnerability for arrhythmias in KO-mice, which could be influenced with eplerenone treatment. EP studies revealed no significant differences regarding function of sinus and atrioventricular node, but, analogous to ECG-studies, significant more and severe arrhythmias could be detected in KO-mice, which could be clearly reduced with eplerone. By use of Picro-sirius red staining as a tool to appraise collagen fibers, a significant higher amount of collagen in heart slices of KO-mice could be proved, while treatment with eplerenone reduced fibrosis distinctly, both in WT and in KO-mice. In summary, manifold phenotypical characterizations of SPRED2 KO mice showed to be only partially result of the hyperaldosteronism and revealed only partial influence due to eplerenone treatment. KW - Spred-Proteine KW - Renin-Angiotensin-System KW - Aldosteronantagonist KW - Herzfunktion KW - MAP-Kinase KW - Gen-Knockout KW - Renin-Angiotensin-Aldosteron-System KW - heart KW - aldosterone Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166029 ER - TY - THES A1 - Mandel, Philipp T1 - Entstehung von oxidativen Stressmarkern in DNA und RNA nach der Behandlung mit den Hormonen Angiotensin II und Aldosteron in vitro und in vivo : Vergleich von drei Analysemethoden zum Nachweis von 8-Oxo-2'-desoxyguanosin in LLC-PK1-Zellen T1 - Formation of oxidative stress markers in DNA and RNA after treatment with aldosterone and angiotensin II in vitro and in vivo N2 - The detection of oxidative stress markers has gained increasing importancy in the early investigation of diseases like diabetes, cancer or hypertension. 8 oxo 2' deoxyguanosine (8-oxodG) is the main marker, which is used for the intracellular detection of oxidative stress levels. However, the oxidative stress markers 8 oxoguanine (8-oxoGua), a product of the DNA base excision repair and 8 oxoguanosine (8-oxoGuo), a marker for oxidative damaged RNA have received less attention up to now. The renin-angiotensin-aldosterone system (RAAS) plays an important role in the regulation processes of the blood pressure system. During hypertension angiotensin II (Ang II) and aldosterone (Aldo) are released in high concentrations over a longer period leading to non-physiological effects of the RAAS hormones. Subsequently, an increase of the intracellular oxidative stress level in kidney cells can be measured. The aim of this thesis is the in vitro and in vivo detection of the oxidative damage in DNA and RNA by measuring oxidative stress markers, especially 8-oxodG which is triggered by Ang II and Aldo. In vitro experiments were carried out in LLC-PK1, a cell line originated from porcine kidney cells. It could been shown that Ang II and Aldo led to a dose-dependent increase of DNA damage in the cells. A time-dependent increase was detected for the first 30 minutes of the treatment. For the rest of the experimental set up (4 h) the level of detected DNA damage remained constant. The FPG comet assay and the immunocytochemical staining showed a significant increase of 8-oxodG in the cells, whereas the HPLC-MS/MS measurement only detected a small increase of 8-oxodG in the DNA. The FPG enzyme, which recognises also other oxidized purines besides 8-oxodG, which led to an overestimation of 8-oxodG in the comet assay. Also, the 8 oxodG antibody, which was used in the immunocytochemical analysis, detected higher amounts of 8-oxodG most likely due to its side reactions with other oxidized DNA structures. One of the main advantages of the last mentioned methods is the direct measurement in damaged cells, whereas the HPLC-MS/MS requires an isolation of the DNA. During this isolation process the oxidative stress markers can be oxidized and the detection can become imprecise. The main purpose of the in vivo experiments was the detection of the oxidative stress marker 8-oxoGua, 8-oxodG and 8-oxoGuo in the urine of test animals. The treatment of C57BL/6 mice and Sprague Dawley (SD) rats with the RAAS hormones led to an increase of the blood pressure, higher DNA damage due to oxidative stress as well as an increased excretion rate of oxidative stress markers. The inhibition of the angiotensin II type 1- or mineralocorticoid receptor and a mutation of the AT1a gene could show, that the DNA damage is independent from the hypertension. In addition, it was shown that the NOX4 is not alone responsible for the oxidative stress. Other NADPH oxidases must contribute to the induction of oxidative stress inside the cell. Moreover, the activation of the Nrf2 pathway has an influence on the effect of Aldo in SD rats. The excretion rate of the oxidative stress markers in the 20 h urine of the treated animals showed how the equilibrium between the DNA repair and the oxidative stress level was changing over time. The measurement of 8-oxoGuo became more and more popular, because up to the fact that 80 % of the DNA is translated into RNA. Overall, the detection of 8-oxodG and 8-oxoGuo is feasible for monitoring the disease or the healing process, because the measurement is non-invasive. The detection of 8-oxodG and 8-oxoGuo in nucleic acids is a first step into the field of basic research methods, because it reveals a snapshot of the nucleic acid damage in the cell at a specific time point. Usually, there will be an overestimation of the oxidative stress marker resulting from the analytical method. Although, it is possible to detect an underestimation of oxidative stress markers in tissue samples if not all cell types are damaged equally. Therefore, a primary goal should be the detection of a stable oxidation product of guanine to insure a reliable detection strategy and for a better understanding of the equilibrium of DNA oxidation and repair. N2 - Der Nachweis von oxidativen Stressmarkern hat bei der Untersuchung von Krankheiten wie Diabetes, Krebs und Hypertonie an großer Bedeutung gewonnen. Vor allem 8-Oxo-2’-desoxyguanosin (8-oxodG) wird gezielt mit verschiedenen Methoden gemessen und als Marker für oxidativen Stress herangezogen. Daneben haben 8 Oxoguanin (8-oxoGua), als Produkt aus der Basenexzisionsreparatur der DNA, sowie 8-Oxoguanosin (8-oxoGuo), als Biomarker für oxidativ geschädigte RNA, bisher weniger Aufmerksamkeit bekommen. Das Renin-Angiotensin Aldosteron System (RAAS) spielt eine wichtige Rolle in der Regulierung des Blutdrucks. Im Falle einer Hypertonie werden Angiotensin II (Ang II) und Aldosteron (Aldo) über einen langen Zeitraum in erhöhter Konzentration ausgeschüttet. Dieser Umstand bewirkt eine nicht physiologische Wirkung der Hormone des RAAS, welche zu einer Induktion von oxidativem Stress führt. Die Zielsetzung dieser Arbeit ist es, die oxidative Schädigung, ausgelöst durch Ang II und Aldo, in der DNA und der RNA in vitro und in vivo nachzuweisen und dabei speziell den Biomarker 8-oxodG zu untersuchen. In-vitro-Experimente wurden mit LLC PK1-Zellen, einer Schweinenierenzelllinie, durchgeführt. Ang II und Aldo lösten einen dosisabhängigen Anstieg der DNA Schäden in LLC PK1 Zellen aus. Eine Zeitabhängigkeit wurde für die ersten 30 Minuten gezeigt. Für die restliche Zeit (4 h) blieb der nachgewiesene DNA Schaden konstant. Der FPG Comet-Assay und die immunzytochemische Färbung zeigten jeweils eine signifikante Zunahme von 8-oxodG in LLC-PK1-Zellen an, während die HPLC MS/MS Messung nur geringe Veränderungen nachwies. Das FPG Enzym erkennt neben 8-oxodG auch andere oxidierte Purine und sorgte so für eine Überbestimmung des DNA-Schadens. Bei der immunzytochemischen Färbung entsteht die Überbestimmung durch Kreuzreaktionen des 8 oxodG Antikörpers mit oxidierten Strukturen in der DNA. Der Vorteil beider Analysemethoden ist die direkte Messung von Schädigungen in der Zelle, während die HPLC-MS/MS eine Isolierung der Nukleinsäuren voraussetzt. Bei diesem Schritt kann es zur Oxidation der Marker für oxidativen Stress kommen, welche einen genauen Nachweis erschwert. In vivo-Versuche hatten zum Ziel, die oxidativen Stressmarker 8-oxoGua, 8-oxodG und 8-oxoGuo im Urin nachzuweisen. Die Behandlung der C57BL/6-Mäuse und Sprague Dawley-Ratten (SD-Ratten) mit den Hormonen des RAAS zeigten einen Anstieg des Blutdrucks, erhöhte DNA Schäden durch oxidativen Stress sowie erhöhte Exkretionsraten der oxidativen Stressmarker. Durch eine Inhibierung des Angiotensin II-Typ1- oder Mineralkortikoidrezeptors sowie die Mutation des Gens AT1a konnte gezeigt werden, dass die Schädigungen unabhängig vom Blutdruck sind. Zudem konnte gezeigt werden, dass neben NOX4 auch andere NADPH Oxidasen für den oxidativen Stress verantwortlich sein müssen. Eine Aktivierung des Nrf2 Signalweges in den SD-Ratten hat Einfluss auf die Wirkung von Aldo. Die Exkretionsrate der oxidativen Biomarker im 20-h-Urin der behandelten Tiere zeigen, wie sich das Gleichgewicht zwischen DNA-Reparatur und oxidativem Stress verändert. Da 80 % der DNA in RNA umgeschrieben werden, ist der Nachweis von 8 oxoGuo in den Fokus gerückt. In der praktischen Anwendung kann mit der Messung von 8 oxodG und 8-oxoGuo ein Krankheits- oder Heilungsprozess auf nicht invasive Weise verfolgt werden. Der Nachweis von 8-oxodG und 8-oxoGuo in den Nukleinsäuren stellt einen Einstieg für die Grundlagenforschung dar, da sie nur eine Momentaufnahme der Nukleinsäureschädigung in der Zelle zeigen. Meist findet eine Überbestimmung, ausgelöst durch die Messmethode, statt. In Gewebeproben kann eine Unterbestimmung vorliegen, falls nicht alle Zelltypen vom oxidativen Stress betroffen sind. Daher sollte es ein vorrangiges Ziel sein, ein stabileres Oxidationsprodukt des Guanins nachzuweisen, um das Gleichgewicht der DNA-Oxidation und Reparatur besser zu verstehen. KW - Oxidativer Stress KW - Aldosteron KW - Renin-Angiotensin-Aldosteron-System KW - Angiotensin II KW - LC-MS KW - oxidative Stressmarker KW - 8-Oxo-2’-desoxyguanosin KW - Hydroxylradikal KW - DNA-Reparatur KW - Mineralokortikoidrezeptor KW - 8-oxo-2'-deoxyguanosine KW - DNA base excision repair KW - hypertension KW - oxidative stress marker KW - RNA degradation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111190 ER -