TY - JOUR A1 - Weiste, Christoph A1 - Pedrotti, Lorenzo A1 - Selvanayagam, Jebasingh A1 - Muralidhara, Prathibha A1 - Fröschel, Christian A1 - Novák, Ondřej A1 - Ljung, Karin A1 - Hanson, Johannes A1 - Dröge-Laser, Wolfgang T1 - The Arabidopsis bZIP11 transcription factor links low-energy signalling to auxin-mediated control of primary root growth JF - PLoS Genetics N2 - Plants have to tightly control their energy homeostasis to ensure survival and fitness under constantly changing environmental conditions. Thus, it is stringently required that energy-consuming stress-adaptation and growth-related processes are dynamically tuned according to the prevailing energy availability. The evolutionary conserved SUCROSE NON-FERMENTING1 RELATED KINASES1 (SnRK1) and the downstream group C/S\(_{1}\) basic leucine zipper (bZIP) transcription factors (TFs) are well-characterised central players in plants’ low-energy management. Nevertheless, mechanistic insights into plant growth control under energy deprived conditions remains largely elusive. In this work, we disclose the novel function of the low-energy activated group S\(_{1}\) bZIP11-related TFs as regulators of auxin-mediated primary root growth. Whereas transgenic gain-of-function approaches of these bZIPs interfere with the activity of the root apical meristem and result in root growth repression, root growth of loss-of-function plants show a pronounced insensitivity to low-energy conditions. Based on ensuing molecular and biochemical analyses, we propose a mechanistic model, in which bZIP11-related TFs gain control over the root meristem by directly activating IAA3/SHY2 transcription. IAA3/SHY2 is a pivotal negative regulator of root growth, which has been demonstrated to efficiently repress transcription of major auxin transport facilitators of the PIN-FORMED (PIN) gene family, thereby restricting polar auxin transport to the root tip and in consequence auxin-driven primary root growth. Taken together, our results disclose the central low-energy activated SnRK1-C/S\(_{1}\)-bZIP signalling module as gateway to integrate information on the plant’s energy status into root meristem control, thereby balancing plant growth and cellular energy resources. KW - root growth KW - sucrose KW - auxins KW - meristems KW - regulator genes KW - genetically modified plants KW - gene expression KW - plant growth and development Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-157742 VL - 13 IS - 2 ER - TY - JOUR A1 - Fröschel, Christian T1 - In-depth evaluation of root infection systems using the vascular fungus Verticillium longisporum as soil-borne model pathogen JF - Plant Methods N2 - Background While leaves are far more accessible for analysing plant defences, roots are hidden in the soil, leading to difficulties in studying soil-borne interactions. Inoculation strategies for infecting model plants with model root pathogens are described in the literature, but it remains demanding to obtain a methodological overview. To address this challenge, this study uses the model root pathogen Verticillium longisporum on Arabidopsis thaliana host plants and provides recommendations for selecting appropriate infection systems to investigate how plants cope with root pathogens. Results A novel root infection system is introduced, while two existing ones are precisely described and optimized. Step-by-step protocols are presented and accompanied by pathogenicity tests, transcriptional analyses of indole-glucosinolate marker genes and independent confirmations using reporter constructs. Advantages and disadvantages of each infection system are assessed. Overall, the results validate the importance of indole-glucosinolates as secondary metabolites that limit the Verticillium propagation in its host plant. Conclusion Detailed assistances on studying host defence strategies and responses against V. longisporum is provided. Furthermore, other soil-borne microorganisms (e.g., V. dahliae) or model plants, such as economically important oilseed rape and tomato, can be introduced in the infection systems described. Hence, these proven manuals can support finding a root infection system for your specific research questions to further decipher root-microbe interactions. KW - Arabidopsis thaliana KW - Brassica napus KW - indole-glucosinolates KW - plant defence KW - root infection systems KW - root pathogens KW - soil-borne microorganisms KW - Solanum lycopersicum KW - Verticillium dahliae KW - Verticillium longisporum Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260807 VL - 17 ER - TY - THES A1 - Fröschel, Christian T1 - Genomweite Analyse der zellschichtspezifischen Expression in der Arabidopsis-Wurzel nach Inokulation mit pathogenen und mutualistischen Mikroorganismen T1 - Genome-wide analysis of cell-type specific expressed genes in the Arabidopsis-root after inoculation with pathogenic and mutualistic microorganisms N2 - Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine Überprüfung dieser Hypothese war bisher wegen methodischen Limitierungen nicht möglich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinitätsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, ermöglicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenbürtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Erträge positiv beeinflussen, wohingegen der vaskuläre Pilz Verticillium longisporum für erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen befällt und Ernten zerstört. Für die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen während ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgeführt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterstützt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begründbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, über den äußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verstärkung der Barriere-Funktionen dieser Zellschicht führen. So könnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen lösten besonders im Cortex die Induktion von Genen für die Biosynthese Trp-abhängiger, antimikrobieller Sekundärmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun geklärt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgelöst werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes ermöglicht nun, gezielt testbare Hypothesen zu generieren. Ein Verständnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell für die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft. N2 - Although plant roots are surrounded by a plethora of microorganisms, their interactions are poorly characterized on a molecular level. Due to the concentric organization of the root cell-layers, it is anticipated that these layers contribute to pathogen defense by providing specific genetically defined programs, which build up barriers to restrict infection. Because of methodical limitations, this theory was not confirmed, yet. Immunoprecipitation of cell-layer specific expressed epitope-tagged ribosomes allows an isolation of ribosome/mRNA complexes that subsequently can be analyzed. This approach is called “Translating Ribosome Affinity Purification” (TRAP). It was optimized to identify cell-layer specific induced defenses and to be combined with a system to inoculate plant roots directly with soil-born microorganisms. Hence, this method enables molecular dissection of infected Arabidopsis-roots to unravel expression patterns found in rhizodermis, cortex, endodermis and central cylinder, respectively. Comparative studies were performed with three species of microorganisms having different life-styles: On the one hand the beneficial fungus Piriformospora indica, that can promote plant growth and crop yield and on the other hand two pathogens with the vascular fungus Verticillium longisporum, causing damage in oilseed rape production and the hemibiotrophic Oomycet Phytophthora parasitica, which causes plant damage on many crop plants. After performing TRAP with infected roots, the cell-type specific mRNA was analyzed via RNA-Sequencing resulting in a genome-wide impression of differentially expressed genes (Inf-TRAP-Seq). Massive differences occurred among the cell-layers approving the theory of cell-type specific immune responses. Moreover the defense responses varied according to inoculation with pathogenic or beneficial microorganisms probably due to their life-style. For example by using the newly established Inf-TRAP-Seq approach it was shown that positive regulators of cell proliferation were expressionally repressed in central cylinder of pathogen-infected roots but not in P. indica colonized roots. This correlates with the observation that root growth is suppressed after inoculation with pathogens but not after inoculation with P. indica. Although none of the three microorganisms is able to penetrate the central cylinder, differentially expressed genes were detected in this layer suggesting an exchange of signals to enable communication between inner and outer layers. Expression patterns were identified in the endodermis, that could lead to reinforcement of barrier functions of this cell-layer for example by lignification-processes. By this means the propagation of the microorganisms is restricted. All three microorganisms elicited induction of genes involved in biosynthesis of Trp-derived secondary metabolites, especially in the cortex. Now the biological relevance of these distributions can be investigated additionally. Hence, within this thesis for the first time a cell-type specific resolution was obtained regarding defense responses in the Arabidopsis-root triggered by microorganisms. A huge dataset was generated. This can be analyzed extensively by bioinformatics and its applications to set up new hypotheses, which can be tested by further approaches. An understanding of cell-type defined root defense responses is essential to facilitate new strategies for protecting crop plants against pathogens and to increase crop yield in agriculture. KW - Schmalwand KW - Wurzel KW - Phytophthora KW - Piriformospora indica KW - Verticillium KW - Wurzelzellschichten KW - Zellschichtspezifische Expression KW - Zentralzylinder KW - Cortex KW - Rhizodermis KW - Endodermis KW - cell-type specific KW - Inf-TRAP-Seq Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146439 ER -