TY - THES A1 - Martin, Corinna T1 - Oxidized phospholipids and their role in neuronal excitation of primary sensory neurons T1 - Oxidierte Phospholipide und ihre Funktion in neuronaler Erregbarkeit in primären sensorischen Neuronen N2 - Recently, our research group identified in a study novel proalgesic targets in acute and chronic inflammatory pain: oxidized phospholipids (OxPL). OxPL, endogenous chemical irritants, are generated in inflamed tissue and mediate their pain-inducing function by activating the transient receptor potential channels TRPA1 and TRPV1. Both channels are sensors for chemical stimuli on primary afferent nociceptors and are involved in nociception. Here, with the help of calcium imaging and whole cell patch clamp recording techniques, it was found that OxPL metabolites acutely activate TRPA1 and TRPV1 ion channels to excite DRG neurons. OxPL species act predominantly via TRPA1 ion channels and mediate long- lasting non-selective inward currents. Notably, one pure OxPL compound, PGPC, activated a TRPA1 mutant lacking the binding site for electrophilic agonists, suggesting that OxPL activate TRP ion channels by an indirect mechanical mechanism. Next, it was investigated how OxPL influence the excitability of primary sensory neurons. Acute stimulation and fast calcium imaging revealed that OxPL elicit repetitive, spike-like calcium transients in small- diameter DRG neurons, which were fully blocked by antagonists against TRPA1/V1 and N- type voltage-gated calcium channels. In search of a mechanism that drives repetitive spiking of DRG neurons, it was asked whether NaV1.9, a voltage-gated sodium channel involved in subthreshold excitability and nociception, is needed to trigger OxPL-induced calcium spikes and action potential firing. In electrophysiological recordings, both the combination of local application of OxPL and current injection were required to efficiently increase the action potential (AP) frequency of small-diameter sensory neurons. However, no difference was monitored in the resting membrane potential or OxPL-induced AP firing rate between wt and NaV1.9-deficient small diameter DRG neurons. To see whether NaV1.9 needs inflammatory conditions to be integrated in the OxPL-induced excitation cascade, sensory neurons were pretreated with a mixture of inflammatory mediators before OxPL application. Under inflammatory conditions both the AP and the calcium-spike frequency were drastically enhanced in response to an acute OxPL stimulus. Notably, this potentiation of OxPL stimuli was entirely lost in NaV1.9 deficient sensory neurons. Under inflammatory conditions, the resting membrane potential of NaV1.9-deficient neurons was more negative compared to wt neurons, suggesting that NaV1.9 shows resting activity only under inflammatory conditions. In conclusion, OxPL are endogenous irritants that induce excitability in small-diameter DRG neurons, a cellular model of nociceptors, via TRP activation. This effect is potentiated under inflammatory conditions. Under these conditions, NaV1.9 functions as essential mediator as it eases the initiation of excitability after OxPL stimulation. As mutants in the human NaV1.9 mediate an enhanced or painless perception, this study provides new insight into the mechanism on how NaV1.9 amplifies stimuli of endogenous irritants under inflammatory conditions. N2 - Im Zuge einer Studie über Entzündungsschmerz hat unsere Arbeitsgruppe oxidierte Phospholipide (OxPL) als neue endogene Entzündungsmediatoren entdeckt. Diese werden im entzündeten Gewebe produziert und vermitteln ihre schmerzinduzierende Funktion durch Aktivierung von sogenannten transienten Rezeptorpotentialkanälen TRPA1 und TRPV1. Beide Ionenkanäle werden von afferenten Nozizeptoren exprimiert und sind Sensoren für chemische Reize. In dieser Arbeit wurde mithilfe von Calcium Imaging und elektrophysiologischen Messungen gezeigt, dass oxidierte Phospholipide TRPA1 und TRPV1 aktivieren und eine erhöhte Erregbarkeit in sensorischen Neuronen der Hinterwurzelganglien (DRG Neuronen) auslösen. Hierbei aktivieren oxidierte Phospholipide TRPA1 stärker als TRPV1 und induzieren langanhaltende, nicht-selektive Einwärtsströme. Ein Bestandteil von OxPL, das Oxidationsprodukt PGPC, aktiviert zudem eine Mutante von TRPA1, die nicht die Bindungsstelle für elektrophile Agonisten trägt. Dies lässt vermuten, dass OxPL die TRP Kanäle über einen indirekten, mechanischen Mechanismus aktivieren. Als nächstes wurde der Einfluss von OxPL auf die Erregbarkeit von sensorischen Neuronen untersucht. Schnelles Calcium Imaging zeigte, dass eine akute Stimulation mit OxPL zu wiederholten spike-ähnlichen Signalen in DRG Neuronen führt. Diese waren nur in Neuronen mit kleinem Durchmessern zu finden und deren Aktivierung konnte sowohl durch Antagonisten gegen TRPA1/V1 als auch mit Inhibitoren spannungsgesteuerter N-Typ Kalziumkänale blockiert werden. Elektrophysiologische Untersuchungen zeigten, dass eine Strominjektion mit gleichzeitiger lokaler Applikation von OxPL zur Erhöhung der Aktionspotentialsrate in kleinen DRG Neuronen führt. Deshalb wurde untersucht, ob der spannungsgesteuerte Natriumkanal NaV1.9 für die durch OxPL induzierten Kalziumspikes und Aktionspotentiale verantwortlich ist, da er an der unterschwelligen Erregbarkeit von Neuronen beteiligt ist. Es konnte jedoch kein Unterschied beim Ruhemembranpotential oder der OxPL induzierten Aktionspotentialsrate zwischen den wt und NaV1.9-defizienten (NaV1.9 KO) Neuronen festgestellt werden. Um zu verstehen, ob NaV1.9 unter inflammatorischen Bedingungen in die OxPL induzierte Erregungskaskade integriert wird, wurden die sensorischen Neurone mit inflammatorischen Mediatoren vorbehandelt und anschließend mit OxPL stimuliert. Dies führte sowohl zu einer stark erhöhten Kalziumspike- als auch Aktionspotentialfrequenz im wt, während die NaV1.9 KO Neurone sich wie unter nicht inflammatorischen Bedingungen verhielten. Unter inflammatorischen Bedingungen konnte zudem eine Erniedrigung des Ruhemembranpotentials im Vergleich zwischen NaV1.9 KO und wt Neuronen beobachtet werden. Das lässt vermuten, dass NaV1.9 seine Ruheaktivität nur unter Entzündungsbedingungen zeigt. In dieser Arbeit wurde gezeigt, dass OxPL endogene Agonisten sind, die kleine DRG Neurone, ein zelluläres Model für Nozizeptoren, über TRPA1 und TRPV1 aktivieren. Dieser Effekt wird unter Entzündungsbedingungen verstärkt. Hierbei spielt der unterschwellig aktive Kanal NaV1.9 eine essentielle Vermittlerrolle, indem er die Auslösung von Aktionspotentialen nach einem OxPL Stimulus erleichtert. Da Mutationen im menschlichen Na1.9 Kanal zu einem erhöhten oder sogar fehlendem Schmerzempfinden führen können, gibt diese Studie einen neuen Einblick in den Mechanismus mit dem NaV1.9 Stimuli endogener, reizauslösender Substanzen unter Entzündungsbedingungen amplifiziert. KW - inflammatory pain KW - Entzündungsschmerz KW - NaV1.9. oxidized phospholipids KW - TRPA1 KW - TRPV1 KW - DRG KW - oxidierte Phospholipide KW - Entzündung KW - Schmerz KW - Phospholipide Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160665 ER - TY - JOUR A1 - Oehler, Beatrice A1 - Kistner, Katrin A1 - Martin, Corinna A1 - Schiller, Jürgen A1 - Mayer, Rafaela A1 - Mohammadi, Milad A1 - Sauer, Reine-Solange A1 - Filipovic, Milos R. A1 - Nieto, Francisco R. A1 - Kloka, Jan A1 - Pflücke, Diana A1 - Hill, Kerstin A1 - Schaefer, Michael A1 - Malcangio, Marzia A1 - Reeh, Peter W. A1 - Brack, Alexander A1 - Blum, Robert A1 - Rittner, Heike L. T1 - Inflammatory pain control by blocking oxidized phospholipid-mediated TRP channel activation JF - Scientific Reports N2 - Phospholipids occurring in cell membranes and lipoproteins are converted into oxidized phospholipids (OxPL) by oxidative stress promoting atherosclerotic plaque formation. Here, OxPL were characterized as novel targets in acute and chronic inflammatory pain. Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) and its derivatives were identified in inflamed tissue by mass spectrometry and binding assays. They elicited calcium influx, hyperalgesia and induced pro-nociceptive peptide release. Genetic, pharmacological and mass spectrometric evidence in vivo as well as in vitro confirmed the role of transient receptor potential channels (TRPA1 and TRPV1) as OxPAPC targets. Treatment with the monoclonal antibody E06 or with apolipoprotein A-I mimetic peptide D-4F, capturing OxPAPC in atherosclerosis, prevented inflammatory hyperalgesia, and in vitro TRPA1 activation. Administration of D-4F or E06 to rats profoundly ameliorated mechanical hyperalgesia and inflammation in collagen-induced arthritis. These data reveal a clinically relevant role for OxPAPC in inflammation offering therapy for acute and chronic inflammatory pain treatment by scavenging OxPAPC. KW - chronic pain KW - ion channels in the nervous system KW - molecular medicine KW - pain Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-158536 VL - 7 IS - 5447 ER - TY - JOUR A1 - Janzen, Dieter A1 - Bakirci, Ezgi A1 - Wieland, Annalena A1 - Martin, Corinna A1 - Dalton, Paul D. A1 - Villmann, Carmen T1 - Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix JF - Advanced Healthcare Materials N2 - Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber‐reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage‐gated sodium currents display a current–voltage relationship with a maximum peak current at −25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions. KW - 3D electrophysiology KW - 3D neuronal networks KW - cortical neurons KW - melt electrowriting Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215400 VL - 9 IS - 9 ER -