TY - THES A1 - Ortler, Sonja T1 - Die Bedeutung koinhibitorischer Signale in der ZNS Immunregulation: die Rolle des B7-Homologs B7-H1 (PD-L1) T1 - The impact of coinhibitory signals in CNS immune regulation: the role of B7-homologue 1 (PD-L1) N2 - Das koinhibitorische Molekül B7-H1 beeinflusst adaptive Immunantworten und ist vermutlich an den Mechanismen zur Aufrechterhaltung peripherer Toleranz und der Limitierung inflammatorischen Schadens beteiligt. Zusätzlich kommt DZ eine entscheidende Bedeutung in der Entwicklung, Aufrechterhaltung und Regulation ZNS-spezifischer Autoimmunität und Inflammationsprozessen zu. Um den B7-H1/PD-1-Signalweg eingehender zu untersuchen, wurden adaptive Immunantworten und die Zielorgan-spezifische Infiltration im Modell der MOG35-55-induzierten EAE analysiert, einem Tiermodell der MS, das durch neurologische Schädigungen und progressive Paralyse bedingt durch die inflammatorische Demyelinisierung im ZNS charakterisiert ist. Im Vergleich zu Wildtyptieren zeigten B7-H1-/- Mäuse einen beschleunigten Krankheitsbeginn und eine signifikante Steigerung des Schweregrads der EAE. Periphere MOG35-55-spezifische IFNg-/IL-17-Immunzellantworten traten in B7-H1-/- Mäusen verfrüht und verstärkt auf, klangen allerdings auch schneller ab. Im ZNS persistierte jedoch eine signifikant höhere Anzahl aktivierter, Neuroantigen-spezifischer T-Zellen während allen Phasen der EAE, wobei diese Zellen ebenfalls größere Mengen proinflammatorischer Zytokine sezernieren konnten. Experimente mit APZ-assoziiertem B7-H1, die einen direkten inhibitorischen Effekt auf die Aktivierung und Proliferation MOG35-55-spezifischer Effektorzellen zeigten, unterstützen die Hypothese, dass parenchymale Expression von B7-H1 ausschlaggebend für das Schicksal von T-Zellen im Zielorgan ist. B7-H1 stellt damit ein Schlüsselmolekül für die Kontrolle parenchymaler Immunreaktionen dar. Nachdem die Relevanz von B7-H1 auf APZ in vitro bewiesen werden konnte, wurde der Einfluss von B7-H1 auf systemisch oder intrazerebral injizierten DZ mit immunogenem oder tolerogenem Phänotyp untersucht. Intravenöse Applikation von tolerogenen B7-H1-/- DZ resultierte in einer besseren Protektion gegen EAE, und dieser Effekt war von einer gesteigerten Produktion Tr1-/Th2-typischer Zytokine sowie einer verstärkten Sekretion von IL-4 und IL-13 durch CD1d-restringierte T-Zellen in der Peripherie begleitet. Die Anzahl Neuroantigen-spezifischer T-Zellen, die proinflammatorische Zytokine sezernierten, war dementsprechend sowohl in der Peripherie als auch im ZNS reduziert. In diesem Zusammenhang konnte für B7-H1 eine wesentliche Beteiligung an der Inhibition der Aktivierung antigen-spezifischer, regulatorischer T-Zellen und CD1d-restringierter T-Zellen gefunden werden. Bei der Injektion intrazerebraler DZ bewirkten tolerogene DZ im Vergleich zu immunogenen DZ eine Reduktion der ZNS-Infiltration mit CD4+ T-Zellen in der frühen Phase der Erkrankung. Außerdem konnte eine Veränderung des intrazerebralen Zytokinmilieus von IFNg/IL-17 exprimierenden enzephalitogenen T-Zellen zu IL-10+ regulatorischen T-Zellen gezeigt werden. B7-H1-Defizienz auf APZ verstärkte diesen Effekt und führte dadurch in den Mäusen zur partiellen Protektion gegen klinische Symptome der EAE. Zusätzlich wurde die Beteiligung von B7-H1 an der Rekrutierung und ZNS-lokalisierten Induktion der Proliferation CD8+ regulatorischer T-Zellen durch DZ beschrieben. Unabhängig vom Phänotyp der DZ wurde eine bereits in der frühen Phase vorhandene und dauerhaft expandierende Population von CD8+ T-Zellen im ZNS DZ[B7-H1-/-]-injizierter Mäuse gefunden. Diese Zellen konnten in vitro die Proliferation MOG35-55-spezifischer CD4+ T-Zellen supprimieren und wirkten so mutmaßlich an der Abmilderung der EAE mit. Zusammengefasst zeigen die Ergebnisse dieser Arbeit die entscheidende Bedeutung von B7 H1 auf DZ als immuninhibitorisches Molekül, das sowohl enzephalitogene als auch regulatorische T-Zell-Antworten moduliert und damit zur Limitation von Immunantworten beiträgt. N2 - The coinhibitory B7-H1 molecule influences adaptive immune responses and has been proposed to contribute to the mechanisms maintaining peripheral tolerance and limiting inflammatory damage in parenchymal organs. Additionally, DC emerge as crucial immune cell population during development, maintenance and regulation of CNS-specific autoimmunity and inflammation. To further explore the B7-H1/PD1 pathway in CNS autoimmune inflammation, adaptive immune responses and target organ infiltration were analysed in MOG35-55-induced EAE, an animal model of MS characterized by neurological impairment and progressive paralysis resulting from inflammatory demyelination in the CNS. In comparison to wildtype mice B7 H1-/- mice exhibited an accelerated disease onset and significantly exacerbated EAE severity. Peripheral MOG35-55-specific IFNg/IL-17 T cell responses occurred earlier and enhanced in B7-H1-/- mice, but ceased more rapidly. In the CNS, however, significantly higher numbers of activated neuroantigen-specific T cells persisted during all stages of EAE and were able to secrete higher amounts of proinflammatory cytokines. Experiments showing a direct inhibitory role of APC-derived B7-H1 on the activation and proliferation of MOG35-55-specific effector cells support the assumption that parenchymal B7 H1 is pivotal for delineating T cell fate in the target organ. Therefore, B7-H1 represents a key molecule in the control of parenchymal immune reactions. Having shown the critical relevance of B7-H1 on APC in vitro, the influence of B7-H1 expression on systemically or intracerebrally injected DC displaying an immunogenic or tolerogenic phenotype was investigated. Intravenous application of tolerogenic B7-H1-/- DC resulted in a more efficient protection from EAE, accompanied by an increased peripheral production of Tr1/Th2 cytokines and a pronounced secretion of IL-4 and IL-13 by CD1d-restricted T cells. In accordance, numbers of neuroantigen-specific T cells secreting proinflammatory cytokines were reduced both in the periphery and in the CNS. Here, a substantial contribution of B7-H1 to inhibition of activation of antigen-specific, regulatory T cells and CD1d-restricted T cells could be found. Using intracerebral DC injections, a reduction of early CNS CD4+ T cell infiltration was shown for tolerogenic DC compared to immunogenic DC. Furthermore, alteration of the intracerebral cytokine milieu containing IFNg+/IL-17+ encephalitogenic T cells to IL 10+ regulatory T cells was demonstrated. B7-H1 deficiency on DC enhanced this effect, thereby mediating partial protection of mice from clinical signs of EAE. Additionally, involvement of B7-H1 expression on the ability of DC to recruit and induce proliferation of CD8 regulatory T cells locally in the CNS was described. Regardless of DC phenotype, an early and consistently expanding population of CD8+ T cells was observed in the CNS of DC[B7-H1-/-]-injected mice, which was able to suppress proliferation of MOG35-55-specific CD4+ T cells in vitro and thus probably contributes to EAE amelioration in vivo. Taken together, the findings of this study demonstrate the critical importance of DC-derived B7-H1 as an immune-inhibitory molecule capable of modulating both encephalitogenic and regulatory T cell responses thus contributing to the confinement of immune responses. KW - Multiple Sklerose KW - Kostimulation KW - EAE KW - dendritische Zellen KW - ZNS KW - B7-H1 KW - multiple sclerosis KW - costimulation KW - EAE KW - dendritic cells KW - CNS KW - B7-H1 Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34784 ER - TY - JOUR A1 - Simon, Micha A1 - Ipek, Rojda A1 - Homola, György A. A1 - Rovituso, Damiano M. A1 - Schampel, Andrea A1 - Kleinschnitz, Christoph A1 - Kuerten, Stefanie T1 - Anti-CD52 antibody treatment depletes B cell aggregates in the central nervous system in a mouse model of multiple sclerosis JF - Journal of Neuroinflammation N2 - Background: Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) for which several new treatment options were recently introduced. Among them is the monoclonal anti-CD52 antibody alemtuzumab that depletes mainly B cells and T cells in the immune periphery. Considering the ongoing controversy about the involvement of B cells and in particular the formation of B cell aggregates in the brains of progressive MS patients, an in-depth understanding of the effects of anti-CD52 antibody treatment on the B cell compartment in the CNS itself is desirable. Methods: We used myelin basic protein (MBP)-proteolipid protein (PLP)-induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 (B6) mice as B cell-dependent model of MS. Mice were treated intraperitoneally either at the peak of EAE or at 60 days after onset with 200 μg murine anti-CD52 vs. IgG2a isotype control antibody for five consecutive days. Disease was subsequently monitored for 10 days. The antigen-specific B cell/antibody response was measured by ELISPOT and ELISA. Effects on CNS infiltration and B cell aggregation were determined by immunohistochemistry. Neurodegeneration was evaluated by Luxol Fast Blue, SMI-32, and Olig2/APC staining as well as by electron microscopy and phosphorylated heavy neurofilament serum ELISA. Results: Treatment with anti-CD52 antibody attenuated EAE only when administered at the peak of disease. While there was no effect on the production of MP4-specific IgG, the treatment almost completely depleted CNS infiltrates and B cell aggregates even when given as late as 60 days after onset. On the ultrastructural level, we observed significantly less axonal damage in the spinal cord and cerebellum in chronic EAE after anti-CD52 treatment. Conclusion: Anti-CD52 treatment abrogated B cell infiltration and disrupted existing B cell aggregates in the CNS. KW - Alemtuzumab KW - B cells KW - CD52 KW - CNS KW - EAE KW - MS Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-176120 VL - 15 IS - 225 ER -