TY - THES A1 - Joshi, Sanjeev T1 - Preparation and characterization of CdS nanoparticles T1 - DPräparat und characktereisierung von CdS Nanopartikeln N2 - Zusammenfassung CdS-Nanoteilchen mit Größen zwischen 1.1 und 4.2 nm wurden in Äthanol und mit Thioglycerol (TG)-Hülle synthetisiert. Es wurde gezeigt, dass die nass-chemische Synthese ohne Wasser und die Verwendung von TG als Hülle folgende Vorteile bieten: Es konnten kleinere Teilchen hergestellt und eine schmalere Größenverteilung erzielt werden. Zusätzlich wird dem Altern der Teilchen vorgebeugt, und die Ergebnisse sind besser reproduzierbar. Hochaufgelöste Photoemissions-Messungen an kleinen CdS-Teilchen (1.1, 1.4, 1.7, 1.8; 1.8 nm mit Glutathion-Hülle) ergaben Beiträge von fünf verschiedenen Schwefelatom-Typen zum S 2p-Gesamt Signal. Außerdem wurde beobachtet, dass Nanoteilchen unterschiedlicher Größe und/oder mit unterschiedlichen Hüllen-Substanzen verschiedene Photoemissionsspektren zeigen und verschieden starke Strahlenschäden aufweisen. Bei den 1.4 nm großen CdS-Teilchen entsprechen die Komponenten des S 2p-Signals entweder Schwefelatomen mit unterschiedlichen Cd-Nachbarn, Thiol-Schwefelatomen oder teilweise oxidiertem Schwefel. Die jeweilige Zuweisung der Schwefeltypen erfolgte über Intensitäts-Änderungen der einzelnen S 2p-Komponenten als Funktion der Photonenenergie und des Strahlenschadens. Die Daten der 1.4 nm großen CdS-Teilchen wurden mit PES-Intensitäts-Rechnungen verglichen, die auf einem neuen Strukturmodell-Ansatz basieren. Von den drei verwendeten CdS-Strukturmodellen konnte nur ein Modell mit 33 S-Atomen die Variation der experimentellen Intensitäten richtig wieder geben. Modelle von größeren Nanoteilchen mit beispielsweise 53 S-Atomen zeigen Abweichungen von den experimentellen Daten der 1.4 nm-Teilchen. Auf diese Weise kann indirekt auf die Größe der gemessenen Teilchen geschlossen werden. Die Intensitätsrechnungen wurden zum einen „per Hand“ zur groben Abschätzung durchgeführt, zum anderen wurden exaktere Berechnungen mit einem von L. Weinhardt und O. Fuchs entwickelten Programm angestellt. Diese bestätigen die Ergebnisse der Abschätzung. Zudem wurde festgestellt, dass die inelastische freie Weglänge λ keinen signifikanten Einfluss auf die Modellrechnungen hat. Die gemessenen Intensitäts-Änderungen konnten zwar mit mehreren leicht verchiedenen Modellen erklärt werden, allerdings führte nur ein kugelförmiges Teilchen-Modell auch zu den richtigen Intensitätsverhältnissen der einzelnen S 2p-Komponenten. Weiterhin konnte beobachtet werden, dass die elektronische Bandlücke größer ist als die optische Bandlücke. Bei den PES-Messungen wurden einige wichtige Einflüsse sichtbar. So spielen strahlenbedingte Effekte eine große Rolle. Kenntnisse über die Zeitskala solcher Effekte ermöglichen PES-Aufnahmen mit guter Signal-Qualität und erlauben eine Extraploation zur Situation ohne Strahlenschaden. Auch die Dünnschicht-Präparation beeinflusst die Spektren. Beispielsweise zeigten mit Elektrophorese hergestellte Filme Hinweise auf Agglomeration. Schichten, die per Tropfen-Deposition erzeugt wurden, weisen spektrale Änderungen am Rand der Probe auf, und Filme aus Nanoteilchen-Pulver waren nicht homogen. Mikro-Raman Experimente, die in Kollaboration mit Dr. M. Schmitt und Prof. W. Kiefer durchgeführt wurden, ließen große Unterschiede in den Spektren von Nanoteilchen und TG in Lösung erkennen. Dies wurde vor allem auf das Fehlen von S – H –Bindungen zurückgeführt und zeigt damit, dass alle TG-Moleküle verwertet oder ausgewaschen wurden. N2 - Very small, thioglycerol (TG)-capped CdS nanoparticles were synthesized by a wet chemical technique and investigated in the framework of this thesis. Also glutathione-capped particles were investigated for a comparison of the capping agents. High-resolution photoelectron spectroscopy using high-brilliance synchrotron radiation was applied as the major tool for the characterization of these particles. Additionally, the particles were investigated with UV-VIS absorption spectroscopy, XPS using a laboratory source, valence band photoemission spectroscopy (VBPES), near-edge x-ray absorption spectroscopy (NEXAFS), and micro-Raman spectroscopy to address various aspects of the particles. In the beginning, an overview on size quantization effects is given to create a theoretical background behind the work presented in this thesis. Furthermore, an overview of various conventional techniques for size determination is presented. Exact information about size, shape and size distribution of nanoparticles is not yet achievable because of experimental limitations of the various size determination methods. Nanoparticles, with a range of sizes from 1.1 to 4. 2 nm, were synthesized using non-aqueous preparation and a TG capping. It is demonstrated that the use of the non-aqueous wet chemical synthesis method enables the production of very small particles and prohibits the aging of the particles. Furthermore, TG capping leads to a significant improvement for a narrow size distribution. Moreover, the results are very reproducible with TG capping and non-aqueous synthesis. Monodispersed particles can be produced by a size selective precipitation method, however, the reproducibility is questionable due to the aqueous medium of the synthesis in this case. High-resolution photoemission measurements on the small particles, i.e., 1.1 nm (CdS-A), 1.4 nm (CdS-B), 1.7 nm (CdS-C), and 1.8 nm (CdS-D, glutathione-capped), revealed five components as constituents of the S 2p signal after a careful data evaluation. Furthermore, it was observed that the particles with different sizes and capping show differences in the photoemission spectra and also in the beam damage behaviour. The different components of CdS-B were assigned as S atoms with different Cd neighbors, S atoms from thiol and S atoms in a partially oxidized state, based on the observed intensity changes of these components as a function of photon energy and beam damage, and on previous photoemission work on CdS nanoparticles [23, 45]. Furthermore, it was found that this assignment cannot be directly transferred to other particles. A new approach of structural model-based photoemission intensity calculations in comparison with the experimental data is presented. This enables us to understand subtle features in the photoemission spectra, in particular the intensity changes of the different components as a function of photon energy and beam exposure. This approach is especially applied to CdS-B (as some structural information for this particle is avialable from XRD), using three different structural models. It is found that a structural model with 33 S atoms can explain the experimental intensity changes of CdS-B. Furthermore, it is found that the photoemission spectra can be used to determine the particle size indirectly, as other plausible models show significant deviation from the experimental data. To study the various aspects by calculations, such as the influence of the particle shape and of the value of the mean free path, a program developed with L. Weinhardt and O. Fuchs is used for the intensity calculations. In order to determine a reasonable value of the mean free path for the used photon energies, two different equations from previous reports (Seah et al. and Powell et al.) are applied. As average mean free path values for the two photon energies we chose 5.5 ± 2 Å (254 eV) and 14 ± 2 Å (720 eV). The program calculation confirms the result of simple “manual” calculations of the different models. Moreover, it is tested that the value of , used in the calculations does not produce any significant influence on the calculation results. Another interesting feature is derived from the calculations that a model with a rather round shape produces similar intensity ratios for the different components to those of the data. Thus this new approach of analysis of photoemission spectra offers a way to determine particle sizes and to some extent to give an impression of the approximate particle shape. Furthermore, it is observed that the electronic band gap is larger compared to the optical band gap, which was attributed to an enhanced electron-hole correlation for optical absorption in small particles. The XPS experiments performed in the laboratory using an x-ray tube, show that the thin films produced from a freshly synthesized nanoparticle solution are fairly homogeneous and non-charging. Moreover, annealing experiments indicated that TG-capped particles posses less thermal stability as compared to MPA-capped particles. It was demonstrated that beam-induced effects play a major role. However, the knowledge of the time scale for such effects gives the possibility to record photoemission spectra with fairly good signal quality and to extrapolate to zero radiation damage. Further, particles with different sizes and capping show different beam damage behaviour. The thin film preparation by electrophoresis results in significant changes in the spectrum indicating agglomeration, while the drop-deposition technique points towards spectral changes on the rim of the sample, which can be avoided by focusing the radiation to the centre of the deposited dried drop. Micro-Raman experiments carried out in collaboration with C. Dem, Dr. M. Schmitt and Prof. W. Kiefer exhibited major differences in the spectra of nanoparticles as compared to those of the capping molecule thioglycerol. For instance, the absence of the S-H vibrational modes indicates the consumption or removal of all unreacted capping molecules. There is definitely a need for further detailed investigations concerning various interesting aspects of this work. For instance, it would be of significance to extend the program calculations to more models. Also more information about the band gap opening has to be gathered in order to find out the reason for the larger electronic band gap as compared to the optical band gap. The photoemission analysis approach using a model calculation has to be extended to differently prepared nanoparticles, in particular, to address the differences in the location of the various species in the particle as a function of preparation. The efforts of XRD simulations by C. Kumpf et al. [50] may reveal significant new information about the particle size and the size distribution. It can be expected that the program calculations, if extended to more models, can prove the potential of photoelectron spectroscopy to serve as a tool for size and shape determination of nanoparticles, which is a new contribution to the investigation of nanoparticles. KW - Cadmiumsulfid KW - Nanopartikel KW - Nanopartikel KW - Photoemission KW - XRD KW - UV-VIS KW - nanoparticles KW - XPS KW - monodispersity KW - UV-VIS KW - Photoemission Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13395 ER - TY - JOUR A1 - Han, Luyang A1 - Wiedwald, Ulf A1 - Biskupek, Johannes A1 - Fauth, Kai A1 - Kaiser, Ute A1 - Ziemann, Paul T1 - Nanoscaled alloy formation from self-assembled elemental Co nanoparticles on top of Pt films JF - Beilstein Journal of Nanotechnology N2 - The thermally activated formation of nanoscale CoPt alloys was investigated, after deposition of self-assembled Co nanoparticles on textured Pt(111) and epitaxial Pt(100) films on MgO(100) and SrTiO3(100) substrates, respectively. For this purpose, metallic Co nanoparticles (diameter 7 nm) were prepared with a spacing of 100 nm by deposition of precursor-loaded reverse micelles, subsequent plasma etching and reduction on flat Pt surfaces. The samples were then annealed at successively higher temperatures under a H2 atmosphere, and the resulting variations of their structure, morphology and magnetic properties were characterized. We observed pronounced differences in the diffusion and alloying of Co nanoparticles on Pt films with different orientations and microstructures. On textured Pt(111) films exhibiting grain sizes (20–30 nm) smaller than the particle spacing (100 nm), the formation of local nanoalloys at the surface is strongly suppressed and Co incorporation into the film via grain boundaries is favoured. In contrast, due to the absence of grain boundaries on high quality epitaxial Pt(100) films with micron-sized grains, local alloying at the film surface was established. Signatures of alloy formation were evident from magnetic investigations. Upon annealing to temperatures up to 380 °C, we found an increase both of the coercive field and of the Co orbital magnetic moment, indicating the formation of a CoPt phase with strongly increased magnetic anisotropy compared to pure Co. At higher temperatures, however, the Co atoms diffuse into a nearby surface region where Pt-rich compounds are formed, as shown by element-specific microscopy. KW - alloy KW - CoPt KW - HRTEM KW - nanoparticles KW - XMCD KW - Co KW - epitaxy KW - magnetometry KW - Pt Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142869 VL - 2 ER - TY - THES A1 - Niederdraenk, Franziska T1 - Ensemble-Modellierung von Röntgenbeugungsdaten zur Strukturbestimmung von Nanopartikeln T1 - Ensemble modeling of X-ray diffraction data for the geometric structure determination of nanoparticles N2 - Ziel dieser Arbeit war es, die geometrische Struktur von Nanopartikeln mittels Pulver-Röntgenbeugung und einem neuen Analyse-Verfahren, der Ensemble-Modellierung (EM), zu ermitteln. Die genaue Aufklärung der kristallinen Struktur ist ein Schlüssel für die Entwicklung exakter theoretischer Modelle und damit für ein besseres Verständnis der Nanoteilchen und deren Eigenschaften. Dabei fußt die Methode auf einem atomaren Modell und berechnet daraus das Beugungsbild der Teilchen. Neben der Auswertung verschiedener Proben sollte ebenso das Potential der Methode überprüft werden - auch im Vergleich zu Standardmethoden wie der Rietveld-Verfeinerung oder einer Einzellinien-Anpassung. Im Gegensatz zur EM beinhalten letztere kein explizites Nanoteilchenmodell. Insgesamt kamen drei typische Nanopartikel-Systeme zum Einsatz: Zunächst wurden fünf ZnO-Proben untersucht, die aufgrund ihrer verschiedenen Liganden deutlich unterschiedliche Partikelgrößen zeigten. Die präsentierten CdS-Nanoteilchen bildeten dagegen mit unter 100 Atomen bereits den Übergang zur Clusterphysik. Das letzte Kapitel stellte schließlich drei Proben mit deutlich komplexeren Core-Shell-Partikeln vor, welche aus einem CdSe-Kern und einer ZnS-Schale bestehen. Dabei konnten mit Hilfe der EM für alle Systeme sehr viel detailliertere Aussagen gemacht werden, als mit den Standardmethoden. Anhand der ersten vorgestellten ZnO-Probe wurde gezeigt, wie man sich bei der Auswertung mit der EM schrittweise dem besten Modell nähert, indem man, startend mit der Partikelform, anschließend weitere komplexe Merkmale implementiert. In dem ZnO-Kapitel wurde ersichtlich, dass die Liganden eine große Rolle spielen - nicht nur für die Größe der Nanopartikel, sondern auch für deren Qualität. Weiterhin wurde festgestellt, dass der Ligand TG beinahe defektfreie Nanoteilchen liefert, während die Stabilisatoren DACH und DMPDA den Einbau von Stapelfehlern begünstigen. In den jeweiligen Vergleichen mit der Rietveld- und Einzellinien-Anpassung fiel auf, dass diese Methoden für kleine Nanoteilchen Resultate liefern, die als deutlich weniger vertrauenswürdig einzustufen sind als jene, die mit der EM erhalten wurden. Der Grund sind die für kleine Teilchen nicht vernachlässigbaren Faktoren wie eine (anisotrope) Form, Oberflächeneffekte, Parameter-Verteilungen etc., welche nur mit der EM berücksichtigt werden können. Noch ungenauer fällt die Analyse per Absorptionsspektroskopie plus theoretischen Methoden aus. Die einzige CdS-Probe wies mit ca. 1.3 nm Durchmesser besonders kleine Nanoteilchen auf. Das zugehörige Beugungsbild zeigte daher nur noch sehr wenige Strukturen, was bereits die Bestimmung der Kristallstruktur erschwerte. Bei nur noch einigen gestapelten Schichten verloren auch die Stapelfehler ihre ursprüngliche Bedeutung. Die maßgebliche Frage bestand somit darin, ob man bei Kristalliten mit unter 100 Atomen noch von einer "normalen" Kristallstruktur sprechen kann, oder ob hier bereits andere Strukturformen vorliegen, z.B. ähnlich den C60-Molekülen. Da die EM solche Hohl-Strukturen ebenfalls simulieren kann, wäre der nächste Schritt, diese für sehr kleine Partikel im Vergleich zu den üblichen Kristallstrukturen zu testen. Bei den drei betrachteten Core-Shell-Proben zeigte die EM abermals ihre große Stärke, indem sie es ermöglichte, die deutlich komplexeren Teilchen realistisch zu simulieren. So war es möglich, die experimentellen Röntgenbeugungs-Daten hervorragend wiederzugeben, was mit keiner der Standardmethoden gelang. Hierfür war es nötig, neben dem CdSe-Kern eine zusätzliche ZnS-Schalenstruktur einzuführen. Zwar konnte bei den Proben mit der EM alleine nicht eindeutig festgestellt werden, welcher ZnS-Schalentypus vorliegt, es wurden jedoch diverse Anhaltspunkte gefunden, die für ein lokal-epitaktisches Wachstum auf dem CdSe-Kern sprechen. Für die Methode der EM selbst lässt sich in der Retrospektive folgendes fest halten: Sie ist den Standard-Techniken wie der Rietveld-Verfeinerung für sehr kleine Nanopartikel deutlich überlegen. Der Grund dafür sind die vielfältig modellierbaren Strukturen, welche Defekte, Oberflächeneffekte, Parameterverteilungen etc. beinhalten können. Ein weiterer großer Pluspunkt der EM gegenüber anderen Methoden besteht in der Möglichkeit, die immer populärer werdenden Core-Shell-Partikel mit vielfältigen Schalenarten zu simulieren, wobei hier auch noch weitere komplexere Optionen für Schalen, z.B. zweierlei Schalen (Core-Shell-Shell-Teilchen), vorstellbar sind. Die Tatsache, dass all diese Merkmale zudem intrinsisch in dem berechneten Beugungsbild enthalten sind, ist von besonderem Gewicht, da dies bedeutet, keine künstlichen Parameter einführen und diese interpretieren zu müssen. Solange eine gewisse Atomanzahl pro Partikel nicht überschritten wird, und v.a. bei defektbehafteten Nanoteilchen, stellt die EM somit die erste Wahl dar. N2 - The goal of this thesis was to determine the geometric structure of very small nanoparticles by means of powder x-ray diffraction and a novel analysis method called Ensemble Modeling (EM). The knowledge of the crystalline structure is a key feature to develop new theoretical models and thus to better understand the particles' properties. The analysis method itself is based on an atomic model of the particles, which is used to calculate the diffraction pattern via the Debye formula. Apart from the investigation of several nanoparticle samples, the capability of the new technique was tested - especially in comparison to commonly used standard methods like the Rietveld refinement or single-line fits. In contrast to the EM, these methods do not contain a real model of the particles. Altogether, three characteristic nanoparticle systems were used: First of all, five ZnO samples were investigated, which showed different particle sizes (2-15 nm) due to the use of different stabilizing molecules. In contrast, the CdS particles presented here had a diameter of only 1.3 nm, which is already at the transition to cluster physics. The last chapter introduced three samples of the more complex core-shell-nanoparticles, which, in this case, consisted of a CdSe core and a ZnS shell. By applying the EM as analysis method, all particle systems could be investigated in much more detail than with other analysis methods. The first ZnO sample served as an example to explain the stepwise procedure of the EM. After the particle shape was determined, more and more complex features were implemented in order to eventually arrive at the atomic model best reproducing the real particle ensemble. In case of the ZnO samples it was shown that the ligands play a significant role - not only for the size of the particles but also for their structural quality. A further finding due to the analysis with the EM is the high amount of stacking faults for particles stabilized with the ligands DACH or DMPDA, while TG favors a defect-free growth of ZnO nanoparticles. In comparison to the Rietveld method or to a single-line fit, the results for small nanoparticles given by the EM are much more reliable, since none of the other fitting methods can take features like the (anisotropic) particle shape, surface effects or parameter distributions into account. The same holds for a particles' size analysis via UV/Vis absorption spectroscopy together with theoretical models. The EM, in contrast, can account for all of these sophisticated structural features. The only CdS sample in this work contained extremely small particles of about 1.3 nm in diameter. The according diffraction pattern thus shows very broad reflections and little usable structure, thereby hindering a straight-forward analysis. Since the CdS particles consisted of only a few stacked layers, even the concept of stacking faults looses its meaning. The question arises, whether the term "crystal structure" is still appropriate for a particle with less than 100 Atoms. For instance, it would be possible that the particles form hollow structures similar to the C60 molecules. Since these structures can be simulated with the EM as well, this could be one next step to further analyse the XRD data of the CdS sample. The last chapter of this thesis introduced three samples of core-shell-nanoparticles, each with a CdSe core and a ZnS shell. Here again, the power of the EM method was demonstrated by forming a realistic model of these much complexer particles. The calculated diffraction patterns reproduced the experimental data very well - in contrast to all other analysis methods. The success of the EM was due to the implementation of an additional ZnS structure in the simulated model. Even if the shell type of this additional structure could not clearly be identified by XRD and our analysis, there is some strong evidence for a local epitaxy of the ZnS on the CdSe core. In conclusion, it was demonstrated that the EM method is far superior to any of the standard techniques for the diffraction pattern analysis of small nanoparticles. The particular strengths of the EM are the manifold structures, which can be simulated, together with defects, surface effects, parameter distributions etc. A further advantage over the other analysis methods is the possibility to form realistic core-shell-particles with a diversity of shell types. Even more complex shells are conceivable, e.g. a mixed shell or the double shell of the core-shell-shell-particles. All these features are intrinsically included in the models and thus in the diffraction patterns, i.e., no artificial parameters must be introduced and later be interpreted. As long as a certain amount of atoms per particle is not exceeded, and, especially for particles containing many defects, the EM introduced here should thus be preferred. KW - Nanopartikel KW - Röntgenstrukturanalyse KW - Ensemble-Modellierung KW - Core-shell Nanoteilchen KW - CdSe/ZnS Nanoteilchen KW - Strukturbestimmung KW - Röntgenbeugung KW - Zinkoxid KW - Cadmiumselenid KW - XRD KW - structure determination KW - nanoparticles KW - ensemble modeling Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52218 ER - TY - JOUR A1 - Vogel, Patrick A1 - Rückert, Martin Andreas A1 - Friedrich, Bernhard A1 - Tietze, Rainer A1 - Lyer, Stefan A1 - Kampf, Thomas A1 - Hennig, Thomas A1 - Dölken, Lars A1 - Alexiou, Christoph A1 - Behr, Volker Christian T1 - Critical Offset Magnetic PArticle SpectroScopy for rapid and highly sensitive medical point-of-care diagnostics JF - Nature Communications N2 - Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity. KW - biochemical assays KW - characterization and analytical techniques KW - magnetic properties and materials KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300893 VL - 13 ER - TY - JOUR A1 - Karak, Suvendu A1 - Stepanenko, Vladimir A1 - Addicoat, Matthew A. A1 - Keßler, Philipp A1 - Moser, Simon A1 - Beuerle, Florian A1 - Würthner, Frank T1 - A Covalent Organic Framework for Cooperative Water Oxidation JF - Journal of the American Chemical Society N2 - The future of water-derived hydrogen as the “sustainable energy source” straightaway bets on the success of the sluggish oxygen-generating half-reaction. The endeavor to emulate the natural photosystem II for efficient water oxidation has been extended across the spectrum of organic and inorganic combinations. However, the achievement has so far been restricted to homogeneous catalysts rather than their pristine heterogeneous forms. The poor structural understanding and control over the mechanistic pathway often impede the overall development. Herein, we have synthesized a highly crystalline covalent organic framework (COF) for chemical and photochemical water oxidation. The interpenetrated structure assures the catalyst stability, as the catalyst’s performance remains unaltered after several cycles. This COF exhibits the highest ever accomplished catalytic activity for such an organometallic crystalline solid-state material where the rate of oxygen evolution is as high as ∼26,000 μmol L\(^{–1}\) s\(^{–1}\) (second-order rate constant k ≈ 1650 μmol L s\(^{–1}\) g\(^{–2}\)). The catalyst also proves its exceptional activity (k ≈ 1600 μmol L s\(^{–1}\) g\(^{–2}\)) during light-driven water oxidation under very dilute conditions. The cooperative interaction between metal centers in the crystalline network offers 20–30-fold superior activity during chemical as well as photocatalytic water oxidation as compared to its amorphous polymeric counterpart. KW - water oxidation KW - sustainable energy source KW - covalent organic framework KW - catalyst KW - crystalline KW - catalysis KW - nanoparticles Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287591 UR - https://pubs.acs.org/doi/10.1021/jacs.2c07282 SN - 0002-7863 VL - 144 IS - 38 ER -