TY - THES A1 - Burgert, Anne T1 - Untersuchung von Sphingolipiden und anderen Membrankonjugaten mittels hochauflösender Fluoreszenzmikroskopie T1 - Analysis of sphingolipids and other membrane conjugates with super-resolution fluorescence microscopy N2 - Methoden der Fluoreszenz-Lokalisationsmikroskopie (engl. single-molecule localization microscopy, SMLM) ermöglichen es Moleküle zu quantifizieren und deren Verteilung zu analysieren. Im Rahmen dieser Arbeit wurden verschiedene Membranmoleküle auf unterschiedlichen eukaryotischen Zellen, aber auch auf Prokaryoten mit dSTORM (engl. direct stochastic optical reconstruction microscopy) oder PALM (engl.: photoactivated localization microscopy) aufgenommen und quantifiziert. Bevor jedoch diese hochauflösende fluoreszenzbasierte Technik für biologische Fragestellungen angewendet werden konnten, mussten zunächst potentielle Artefakt-auslösende Quellen identifiziert und Strategien gefunden werden, um diese zu eliminieren. Eine mögliche Artefakt-Quelle ist eine zu niedrige Photonenzahl, die von Fluorophoren emittiert wird. Werden zu wenige Photonen detektiert, kann die Lokalisation eines Fluorophors weniger präzise bestimmt werden. Dies kann zu einer falschen Abbildung von Strukturen führen oder zu falschen Rückschlüssen über die Verteilung von Molekülen. Eine Möglichkeit die Anzahl der emittierten Photonen zu erhöhen, ist chemische Additive als Triplettlöscher einzusetzen. Sie bewirken, dass die Fluorophore wieder in den Grundzustand relaxieren und somit wieder angeregt werden können. Es wurden verschiedene Additive, die in der Literatur als Triplettlöscher beschrieben sind, getestet. Dazu wurden zunächst ihre Auswirkungen auf den Triplettzustand verschiedener Fluorophore (Alexa Fluor (Al) 488, 532 und 647 und Atto655) mit Hilfe von Fluoreszenzkorrelationsspektroskopie (FCS) untersucht. Cyclooctatetraen (COT) bewirkte dabei eine Abnahme der Triplettausbeute von Al488, Al532 und Al647 um ~ 40-60%, bei Atto655 veränderte sie sich nicht. Obwohl die Ergebnisse der FCS-Messungen darauf hindeuten, dass COT in einer erhöhten Anzahl an emittierten Photonen resultiert, konnte dies bei dSTORM-Messungen nicht bestätigt werden. Hier hatte COT nur einen größeren positiven Effekt auf das Fluorophor Al647 (Zunahme um ~ 60%). Eine Erklärung für diese Widersprüchlichkeit zu den Ergebnissen aus den FCS-Messungen, könnte das Vorhandensein des Schaltpuffers bei dSTORM-Messungen sein. Dieser bewirkt den Übergang der Fluorophore in den Aus-Zustand bzw. entzieht dem Puffer Sauerstoff. Bei der Zugabe von 5 mM Kaliumiodid (KI) nahm die Triplettamplitude bei FCS-Messungen nur bei Al488 ab (um ~ 80%). Eine geringe Steigerung (um ~ 10%) der Intensität von Al488 mit KI konnte bei dSTORM-Messungen mit niedrigen Konzentrationen (~ 0,5 mM) erzielt werden. Bei einer Konzentration von 5 mM sank die Intensität jedoch wieder um 40%. Deuteriumoxid (D2O) soll, anders als die Triplettlöscher, eine Verbesserung der Photonenausbeute dadurch bewirken, dass strahlungslose Relaxationsprozesse minimiert werden. Mit dSTORM-Messungen konnte gezeigt werden, dass Atto655 und Al647 in D2O zwar pro An-Zustand mehr Photonen emittieren als in Schaltpuffer ohne D2O, da die Fluorophore hier jedoch schneller bleichen, letztendlich die gleiche Anzahl an Photonen detektiert werden. Um die Anzahl an emittierten Photonen zu erhöhen, eignet sich also nur COT bei dSTORM-Messungen mit AL647 und KI in sehr geringen Konzentrationen bei Al488. D2O kann eingesetzt werden, wenn eine Probe schnell vermessen werden muss, wie zum Beispiel bei Lebendzellmessungen. Nicht nur eine zu niedrige Photonenzahl, auch eine zu geringe Photoschaltrate kann Artefakte bei dSTORM-Messungen erzeugen. Dies wurde anhand von verschiedenen biologischen Strukturen, die mit unterschiedlichen Anregungsintensitäten aufgenommen wurden, deutlich gemacht. Besonders die Aufnahmen von Plasmamembranen sind anfällig für die Generierung von Artefakten. Sie weisen viele inhomogene und lokal dichte Regionen auf. Wenn nun mehr als ein Emitter pro µm² gleichzeitig an ist, erzeugt das Auswertungsprogramm große artifizielle Cluster. Die hier durchgeführten Messungen machen deutlich, wie wichtig es ist, dSTORM-Bilder immer auf mögliche Artefakte hin zu untersuchen, besonders wenn Moleküle quantifiziert werden sollen. Dafür müssen die unbearbeiteten Rohdaten sorgfältig gesichtet werden und notfalls die Messungen mit einer höheren Laserleistung wiederholt werden. Da dSTORM mittlerweile immer mehr zur Quantifizierung eingesetzt wird und Clusteranalysen durchgeführt werden, wäre es sinnvoll bei Veröffentlichungen die Rohdaten von entscheidenden Aufnahmen der Öffentlichkeit zur Verfügung zu stellen. Die Färbemethode ist ein weiterer Punkt, durch den Artefakte bei der Abbildung von Molekülen mittels SMLM entstehen können. Häufig werden Antikörper zum Markieren verwendet. Dabei sollte darauf geachtet werden, dass möglichst kleine Antikörper oder Antikörperfragmente verwendet werden, besonders wenn Clusteranalysen durchgeführt werden sollen. Anderenfalls leidet die Auflösung darunter, bzw. erhöht sich die Gefahr der Kreuzvernetzung von Molekülen. Im zweiten Teil der vorliegenden Arbeit, wurden Plasmamembran-Ceramide untersucht. Ceramide gehören zu den Sphingolipiden und regulieren diverse zelluläre Prozesse. Verschiedene Stimuli bewirken eine Aktivierung von Sphingomyelinasen (SMasen), die Ceramide in der Plasmamembran synthetisieren. Steigt die Konzentration von Ceramiden in der Plasmamembran an, kondensieren diese zu Ceramid-reichen Plattformen (CRPs). Bisher ist noch wenig über die Verteilung der Ceramide und die Größe der CRPs bekannt. Sie wurden hier über IgG-Antikörper in der Plasmamembran von Jurkat-, U2OS-, HBME- und primären T-Zellen angefärbt und erstmals mit dSTORM hochaufgelöst, um sie dann zu quantifizieren. Unabhängig von der Zelllinie befanden sich 50% aller Ceramidmoleküle in ~ 75 nm großen CRPs. Im Mittel bestanden die CRPs aus ~ 20 Ceramiden. Mit Hilfe einer Titrationsreihe konnte ausgeschlossen werden, dass diese Cluster nur durch die Antikörper-Färbung artifiziell erzeugt wurden. Bei Inkubation der Zellen mit Bacillus cereus Sphingomyelinase (bSMase) stieg die Gesamtkonzentration der Ceramide in der Plasmamembran an, ebenso wie die Ceramidanzahl innerhalb der CRPs, außerdem die Anzahl und Größe der CRPs. Dies könnte zu einer Veränderung der Löslichkeit von Membrankomponenten führen, was wiederum eine Akkumulation bestimmter Rezeptoren oder eine Kompartimentierung bestimmter Proteine erleichtern könnte. Die Anhäufung der Ceramide in den CRPs könnte ebenfalls die lokale Interaktion mit anderen Membranmolekülen erleichtern und dadurch möglicherweise die Reaktivität von Rezeptoren verändern. Mittels Azid-modifizierten Ceramidanaloga und kupferfreier Click-Chemie wurden Plasmamembran-Ceramide auch in lebenden Jurkat-Zellen mit Hilfe konfokaler Laser-Raster-Mikroskopie (CLSM, engl. confocal laser scanning microscopy) und Strukturierter Beleuchtungsmikroskopie (SIM, engl. structured illumination microscopy) untersucht. Dabei konnte gezeigt werden, dass die Fettsäure-Kettenlänge und die Position des Azids bei den Ceramidanaloga eine entscheidende Rolle spielt, wie hoch das detektierte Signal in der Plasmamembran letztendlich ist. Die Versuche machen auch deutlich, dass die klickbaren Ceramidanaloga lebendzellkompatibel sind, sodass sie eine hervorragende Möglichkeit darstellen, zelluläre Reaktionen zu verfolgen. Es wurden hier nicht nur Ceramide in eukaryotischen Zellen analysiert, sondern auch in Bakterien. Neisseria meningitidis (N. meningitidis) sind gramnegative Bakterien, die im Menschen eine Sepsis oder eine Meningitis auslösen können. Es wurde mittels immunhistochemischen Färbungen mit dem anti-Ceramid IgG-Antikörper, aber auch mit den klickbaren Ceramidanaloga, ein Signal in der Membran erhalten, was mit dSTORM hochaufgelöst wurde. In anderen Bakterien wurden ebenfalls schon Sphingolipide nachgewiesen. Studien zu Ceramiden in N. meningitidis wurden bisher jedoch noch nicht veröffentlicht. Im Rahmen dieser Arbeit konnten erstmals Ergebnisse erhalten werden, die darauf hinweisen, dass N. meningitidis ebenfalls Ceramide besitzen könnten. In einem dritten Projekt wurde die Interaktion zwischen NK-Zellen und Aspergillus fumigatus untersucht. Der Schimmelpilz kann eine Invasive Aspergillose in immunsupprimierten Menschen auslösen, was zum Tod führen kann. Verschiedene Studien konnten schon zeigen, dass NK-Zellen eine wichtige Rolle bei der Bekämpfung des Pilzes spielen. Der genaue Mechanismus ist jedoch noch unbekannt. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass der NK-Zell-Marker CD56 entscheidend für die Pilzerkennung ist. Mit immunhistochemischen Färbungen und LSM-, aber auch dSTORM-Messungen, konnte gezeigt werden, dass die normalerweise homogen verteilten CD56-Rezeptoren auf der Plasmamembran von NK-Zellen aktiv an die Interaktionsstelle zu A. fumigatus transportiert werden. Mit der Zeit akkumulieren hier immer mehr CD56-Proteine, während das Signal in der restlichen Membran immer weiter abnimmt. Es konnte erstmals CD56 als wichtiger Erkennungsrezeptor für A. fumigatus identifiziert werden. In dem letzten bearbeiteten Projekt, wurde die Bindung von Anti-N-Methyl-D-Aspartat (NMDA)-Rezeptor Enzephalitis Autoantikörper an Neuronen untersucht. Bei einer Anti-NMDA-Rezeptor Enzephalitis bilden die Patienten Autoantikörper gegen die NR1-Untereinheit ihrer eigenen postsynaptischen NMDA-Rezeptoren. Da die Krankheit oft sehr spät erkannt wird und die Behandlungsmöglichkeiten noch sehr eingeschränkt sind, führt sie noch oft zum Tod. Sie wurde erst vor wenigen Jahren beschrieben, sodass der genaue Mechanismus noch unbekannt ist. Im Rahmen dieser Arbeit, konnten erste Färbungen mit aufgereinigten Antikörper aus Anti-NMDA-Rezeptor Enzephalitis Patienten an NMDA-Rezeptor-transfizierte HEK-Zellen und hippocampalen Maus-Neuronen durchgeführt und mit dSTORM hochaufgelöst werden. Mit den Messungen der HEK-Zellen konnte bestätigt werden, dass die Autoantikörper an die NR1-Untereinheit der Rezeptoren binden. Es konnten erstmals auch die Bindung der Antikörper an Neuronen hochaufgelöst werden. Dabei wurde sichtbar, dass die Antikörper zum einen dicht gepackt in den Synapsen vorliegen, aber auch dünner verteilt in den extrasynaptischen Regionen. Basierend auf der Ripley’s H-Funktion konnten in den Synapsen große Cluster von ~ 90 nm Durchmesser und im Mittel ~ 500 Lokalisationen und extrasynaptisch kleinere Cluster mit einem durchschnittlichen Durchmesser von ~ 70 nm und ~ 100 Lokalisationen ausgemacht werden. Diese ersten Ergebnisse legen den Grundstein für weitere Messungen, mit denen der Mechanismus der Krankheit untersucht werden kann. N2 - With single molecule localization microscopy (SMLM) quantification of molecules and the analysis of their distribution becomes possible. In this work various plasma membrane molecules of different eukaryotic and prokaryotic cells were imaged with dSTORM (direct stochastic optical reconstruction microscopy) or PALM (photoactivated localization microscopy) and quantified. To use these super-resolution fluorescence microscopy techniques and answer elaborate biological questions, potential sources of artifacts were identified and strategies to circumvent them developed. A possible source of artifacts is an insufficient number of photons emitted by fluorophores. If less photons are detected, determining the localization of one fluorophore is less precise. This can cause a wrong reconstruction of structures or might lead to false conclusions about the distribution of molecules. One possibility to increase the number of photons is to use chemical additives which quench the triplet state of fluorophores. They ensure that the fluorophores relax into the ground state allowing them to become excited again. Different additives, described in literature as triplet quenchers, were tested. The effects of these additives on the triplet state of different fluorophores (Alexa Fluor (Al) 488, 532 und 647 und Atto655) were analyzed with fluorescence correlation spectroscopy (FCS). Cyclooctatetraene (COT) resulted in a decrease of triplet state yield of Al488, Al532 and Al647 by ~ 40-60%, yet the triplet state of Atto655 was unaffected. FCS measurements indicated that COT results in an increased number of emitted photons, but dSTORM measurements could not confirm this finding. Here, COT only revealed a positive effect on the intensity of Al647 (increase by ~ 60%). An explanation for this inconsistency with the FCS results might be the presence of the switching buffer in dSTORM measurements. The buffer is designed to cause a transition of the fluorophores to and stabilize the off-state by removing oxygen from the sample, counteracting the effect of COT. On addition of 5 mM potassium iodide (KI) only Al488 fluorophores showed a decreased triplet state rate (~ 80%) in FCS measurements. This finding was confirmed by dSTORM measurements with low concentrations (~ 0.5 mM) of KI which resulted in a slight intensity increase (~ 10%) of Al488. Higher KI concentration (5 mM) on the other hand showed a reversed effect, resulting in a drop in intensity by ~ 40%. Deuterium oxide (D2O) isn’t a triplet quencher but should minimize non-radiative processes. DSTORM measurements with Atto665 and Al647 revealed, that D2O does not affect the total number of emitted photons per fluorophore. Instead, D2O increased the amount of emitted photons per time. In a nutshell, these results show that dSTORM measurements with Al647 can be improved using COT, and measurements with Al488 by using very low concentrations of KI. If needed, D2O can speed up dSTORM acquisition time considerably, e.g. for life cell measurements. In addition to an insufficient number of collected photons, inappropriate photoswitching rates can induce artifacts in dSTORM measurements as well. This was shown using various biological reference structures. Especially the imaging of plasma membranes is prone to generate artifacts. Plasma membranes exhibit a lot of intrinsically three-dimensional structures with high local emitter densities. In these regions of higher fluorophore densities the likelihood of two close fluorophores emitting at the same time is increased. This in turn can result in large artificial clusters due to misinterpretation by the reconstruction software. Taken together, the performed experiments show how important it is to prove dSTORM images and minimize possibility image artifacts. Thus, raw data movies need to be examined carefully and, if necessary, measurements must be repeated with adapted imaging conditions. Since dSTORM is increasingly used for quantification and cluster analysis it is recommended to publish raw data in the Supporting information of the manuscript. Another source of artifacts when imaging molecules with SMLM is the staining procedure. Usually antibodies are used to label biological structures for dSTORM. In the interest of resolution, small antibodies or just fragments of antibodies should be used, especially if cluster analysis is performed. Otherwise reduced resolution or an increase in cross-linking of molecules might occur. In the second part of this study plasma membrane ceramides were investigated. Sphingolipid ceramides regulate various cellular processes. Different stimuli initiate activation of sphingomyelinases (SMase) which synthesize ceramides at the plasma membrane. A rise in ceramide concentration leads to a condensation of them in ceramide-rich platforms (CRPs). So far, only little is known about the distribution and the size of CRPs. Here, plasma membrane ceramides of Jurkat-, U2OS-, HBME- and primary T-cells were stained with an IgG-antibody, imaged using dSTORM and their distribution quantitatively analyzed. Independent of the analyzed cell line, ~ 50% of all ceramides detected in the plasma membrane formed CRPs with a size of ~ 75 nm. On average one CRP consisted of ~ 20 ceramide molecules. Using a titration series the possibility of artificial cluster generation due to antibody staining was ruled out. Treatment of cells with Bacillus cereus sphingomyelinase (bSMase) increased the overall ceramide concentration in the plasma membrane, the number of ceramides in the CRPs as well as the quantity and the size of CRPs. This might result in a higher solubility of membrane components in CRPs which in turn could facilitate accumulation or compartmentation of certain proteins. Accumulation of ceramides in the CRPs could also enable local interaction with other molecules and possibly change the reactivity of some receptors. To investigate plasma membrane ceramides in living cells azido-modified ceramides and copper-free click chemistry were used for labeling. Imaging was performed using confocal laser-scanning microscopy (LSM) and structured illumination microscopy. It was shown that the length of fatty acid chains and the position of the azido group of ceramide analogues play a decisive role in the magnitude of the detected signal in the plasma membrane. These results demonstrate that azido-functionalized ceramides are live-cell compatible, making them an excellent tool to follow cellular reactions. In this study, ceramides were not only analyzed in eukaryotic cells but in bacteria as well. Neisseria meningitidis (N. meningitidis) are gram-negative bacteria triggering sepsis or meningitis in humans. Using both immunolabeling with anti-ceramide IgG-antibodies and azido-modified ceramides, ceramides were detected for the first time in the membrane of N. meningitidis by dSTORM. Although sphingolipids were reported to exist in various bacterial membranes, studies about ceramides in N. meningitidis have not yet been published. The results obtained here suggest the presence of ceramides in N. meningitidis. The third part of this thesis addresses the interaction between NK cells and Aspergillus fumigatus. The mold can cause invasive aspergillosis in immunocompromised patients which can lead to death. Various studies have already shown that NK cells play a crucial role in the clearance of the fungal infection. Still, the exact mechanism remains unknown. As part of this work the NK cell marker CD56 was identified as a decisive receptor in recognition of the mold. Using LSM and dSTORM measurements in combination with immunocytochemical staining an active transport of the usually homogenous distributed CD56 receptors to the interaction site of NK cells and fungus was detected. Over time CD56 proteins accumulate at these interaction sites while the signal in the rest of the membrane continuously decreases. For the first time this study was able to identify CD56 as an important recognition receptor for A. fumigatus. In the last project binding of anti-N-Methyl-D-aspartate (NMDA) receptor encephalitis autoantibodies were investigated in neurons. Patients with this form of encephalitis generate autoantibodies against the NR1 subunit of their own postsynaptic NMDA receptors. Since NMDA receptor encephalitis is often diagnosed too late and treatment options are limited the disease often proves to be fatal. Anti-NMDA receptor encephalitis was described quite recently, explaining why the exact mechanism remains still unknown. For this study purified antibodies from anti-NMDA receptor encephalitis patients were used to stain NMDA receptor transfected HEK cells and hippocampal mouse neurons. These samples were subsequently imaged with dSTORM and analyzed. Measurements on HEK cells confirmed that the autoantibodies bind to the NR1 subunit. Using dSTORM, the binding sites of these antibodies at the neurons were imaged for the first time with super-resolution microscopy. The receptors are densely localized in synapses and more equally distributed at lower density in extrasynaptic regions. Based on Ripley’s H function synaptic clusters with a diameter of ~ 90 nm and ~ 500 localizations were determined while the extrasynaptic smaller clusters have a median diameter of ~ 70 nm and ~ 100 localizations per cluster. These first results form the basis for further investigations on the mechanism of anti-NMDA receptor encephalitis. KW - Ceramide KW - Fluoreszenzmikroskopie KW - Aspergillus fumigatus KW - NMDA KW - Neisseria meningitidis KW - Lokalisationsmikroskopie KW - dSTORM KW - Plasmamembran Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-145725 ER - TY - THES A1 - Aufmkolk, Sarah T1 - Super-Resolution Microscopy of Synaptic Proteins T1 - Hochauflösende Mikroskopie von Synaptischen Proteinen N2 - The interaction of synaptic proteins orchestrate the function of one of the most complex organs, the brain. The multitude of molecular elements influencing neurological correlations makes imaging processes complicated since conventional fluorescence microscopy methods are unable to resolve structures beyond the diffraction-limit. The implementation of super-resolution fluorescence microscopy into the field of neuroscience allows the visualisation of the fine details of neural connectivity. The key element of my thesis is the super-resolution technique dSTORM (direct Stochastic Optical Reconstruction Microscopy) and its optimisation as a multi-colour approach. Capturing more than one target, I aim to unravel the distribution of synaptic proteins with nanometer precision and set them into a structural and quantitative context with one another. Therefore dSTORM specific protocols are optimized to serve the peculiarities of particular neural samples. In one project the brain derived neurotrophic factor (BDNF) is investigated in primary, hippocampal neurons. With a precision beyond 15 nm, preand post-synaptic sites can be identified by staining the active zone proteins bassoon and homer. As a result, hallmarks of mature synapses can be exhibited. The single molecule sensitivity of dSTORM enables the measurement of endogenous BDNF and locates BDNF granules aligned with glutamatergic pre-synapses. This data proofs that hippocampal neurons are capable of enriching BDNF within the mature glutamatergic pre-synapse, possibly influencing synaptic plasticity. The distribution of the metabotropic glutamate receptor mGlu4 is investigated in physiological brain slices enabling the analysis of the receptor in its natural environment. With dual-colour dSTORM, the spatial arrangement of the mGlu4 receptor in the pre-synaptic sites of parallel fibres in the molecular layer of the mouse cerebellum is visualized, as well as a four to six-fold increase in the density of the receptor in the active zone compared to the nearby environment. Prior functional measurements show that metabotropic glutamate receptors influence voltage-gated calcium channels and proteins that are involved in synaptic vesicle priming. Corresponding dSTORM data indeed suggests that a subset of the mGlu4 receptor is correlated with the voltage-gated calcium channel Cav2.1 on distances around 60 nm. These results are based on the improvement of the direct analysis of localisation data. Tools like coordinated based correlation analysis and nearest neighbour analysis of clusters centroids are used complementary to map protein connections of the synapse. Limits and possible improvements of these tools are discussed to foster the quantitative analysis of single molecule localisation microscopy data. Performing super-resolution microscopy on complex samples like brain slices benefits from a maximised field of view in combination with the visualisation of more than two targets to set the protein of interest in a cellular context. This challenge served as a motivation to establish a workflow for correlated structured illumination microscopy (SIM) and dSTORM. The development of the visualisation software coSIdSTORM promotes the combination of these powerful super-resolution techniques even on separated setups. As an example, synapses in the cerebellum that are affiliated to the parallel fibres and the dendrites of the Purkinje cells are identified by SIM and the protein bassoon of those pre-synapses is visualised threedimensionally with nanoscopic precision by dSTORM. In this work I placed emphasis on the improvement of multi-colour super-resolution imaging and its analysing tools to enable the investigation of synaptic proteins. The unravelling of the structural arrangement of investigated proteins supports the building of a synapse model and therefore helps to understand the relation between structure and function in neural transmission processes. N2 - Das Zusammenspiel von synaptischen Proteinen organisiert präzise die Funktion eines der komplexesten Organe, dem Gehirn. Die Vielfalt der molekularen Bestandteile, die diese neurologischen Beziehungen beeinflussen, verkomplizieren den Bildgebungsprozess, da die konventionellen Fluoreszenzmikroskopiemethoden Strukturen, die kleiner sind als das Beugungslimit, nicht auflösen können. Die Implementierung der hochauflösenden Fluoreszenzmikroskopie in das Gebiet der Neurowissenschaften ermöglicht die Visualisierung feiner Details neurologischer Verbindungen. Die hochauflösende Mikroskopietechnik dSTORM (direct Stochastic Optical Reconstruction Microscopy) und dessen Optimierung als Mehrfarbenanwendung sind Schlüsselelemente meiner Doktorarbeit. Mit der Möglichkeit mehr als ein Protein zu messen, ist es mein Ziel die Verteilung synaptischer Proteine mit nanometer Genauigkeit zu entschlüsseln und diese in ein strukturelles und quantitativ Verhältnis zueinander zu setzen. Aus diesem Grund wurden dSTORM spezifische Protokolle den Besonderheiten der jeweiligen neuronalen Proben angepasst und optimiert. In einem Projekt wird der neurotrophe Faktor BDNF (brain derived neurotrophic factor) in primären hippocampalen Neuronen untersucht. Mit einer Auflösungspräzision von unter 15 nm kann durch eine Färbung der Proteine Bassoon und Homer in der aktiven Zone die prä- und postsynaptische Seite identifiziert werden. Daraus resultierend können Kennzeichen für vollentwickelte Synapsen erfasst werden. Die Einzelmolekülsensitivität von dSTORM ermöglicht erstmalig die Messung von endogenem BDNF und zeigt, dass die BDNF Gruppierungen entlang von glutamatergen Präsynapsen verteilt sind. Diese Daten beweisen, dass hippocampale Neuronen die Möglichkeit haben, BDNF in der vollausgebildeten glutamatergen Präsynapse anzureichern und somit möglicherweise synaptische Plastizität beeinflussen. Die Verteilung des metabotropen Glutamatrezeptors mGlu4 wird in physiologischen Gehirnschnitten untersucht. Das ermöglicht den Rezeptor in seiner natürlichen Umgebung zu analysieren. Mit Zweifarben-dSTORM Messungen wird das räumliche Arrangement der mGlu4 Rezeptoren in der Präsynapse der parallelen Fasern der molekularen Schicht des Mauskleinhirns visualisiert und eine vier- bis sechsfache erhöhte Dichte des Rezeptors in der aktiven Zone, verglichen mit dem näheren Umfeld, aufgezeigt. Vorausgegangende funktionale Messungen zeigen, dass metabotrope Glutamatrezeptoren spannungsgesteuerte Calciumkanäle und Proteine, die in synaptische Vesikelgrundierung involviert sind, beeinflussen. Entsprechende dSTORM Daten deuten darauf hin, dass ein Teil der mGlu4 Rezeptoren mit dem spannungsgesteuerten Calciumkanal Cav2.1 auf einer Distanz von circa 60 nm korreliert ist. Diese Ergebnisse basieren auf der Verbesserung der direkten Analyse der Lokalisationsdatensätze. Werkzeuge, wie die Koordinaten basierte Korrelationsanalyse und die Nächste Nachbaranalyse von Clusterschwerpunkten werden sich ergänzend benutzt, um ein umfassendes Bild von Proteinverbindungen in der Synapse zu erzeugen. Die Grenzen und die Verbesserungsmöglichkeiten dieser Werkzeuge werden diskutiert, um die quantitative Analyse von Einzelmoleküldatensätzen voranzubringen. Die Durchführung von hochauflösender Mikroskopie an komplexen Proben, wie Gehirnschnitten, wird begünstigt durch die Maximierung der Aufnahmefläche in Kombination mit der Möglichkeit mehr als zwei Zielstrukturen zu visualisieren, um somit das Protein von primären Interesse in einen zellulären Zusammenhang zu setzen. Diese Herausforderung hat als Motivation gedient, ein Messprotokoll für korrelierte Strukturierte Beleuchtungsmikroskopie (SIM) und dSTORM zu etablieren. Die Entwicklung der Visualisierungssoftware coSIdSTORM erleichtert die Kombination dieser beiden leistungsstarken, hochauflösenden Techniken, sogar wenn diese auf getrennten Mikroskopieaufbauten umgesetzt werden. Als ein Beispiel werden Synapsen, die zwischen den parallelen Fasern in der molekularen Schicht des Cerebellums und den Purkinje-Zellen ausgebildet werden, mit SIM identifiziert und das Protein Bassoon in diesen Präsynapsen wird mit einer nanometergenauen Präzision drei-dimensional mit dSTORM Messungen visualisiert. In meiner Arbeit habe ich den Fokus auf die Weiterentwickelung von hochauflösender Mehrfarbenmikroskopie und die damit verbundenen analytischen Werkzeuge gelegt, sodass die Untersuchung von synaptischen Proteinen ermöglicht wird. Die Herausarbeitung des strukturellen Arrangements der untersuchten synaptischen Proteine unterstützt den Aufbau eines Models der Synapse und erweitert somit das Verständnis des Zusammenhangs von Struktur und Funktion in neuronalen Übertragungsvorgängen. KW - Hochauflösende Mikroskopie KW - correlative methods KW - Fluoreszenzmikroskopie KW - Synaptische Proteine KW - Korrelative Mikroskopie KW - dSTORM KW - SIM KW - fluorescence KW - super-resolution microscopy KW - localization microscopy KW - two-color microscopy KW - synapse KW - synaptic proteins Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151976 ER - TY - THES A1 - Bartossek, Thomas T1 - Structural and functional analysis of the trypanosomal variant surface glycoprotein using x-ray scattering techniques and fluorescence microscopy T1 - Strukturelle und funktionale Analyse des variablen Oberflächenproteins von Trypanosoma brucei mithilfe vön Röntgenstreutechniken und Fluoreszenzmikroskopie N2 - Trypanosoma brucei is an obligate parasite and causative agent of severe diseases affecting humans and livestock. The protist lives extracellularly in the bloodstream of the mammalian host, where it is prone to attacks by the host immune system. As a sophisticated means of defence against the immune response, the parasite’s surface is coated in a dense layer of the variant surface glycoprotein (VSG), that reduces identification of invariant epitopes on the cell surface by the immune system to levels that prevent host immunity. The VSG has to form a coat that is both dense and mobile, to shield invariant surface proteins from detection and to allow quick recycling of the protective coat during immune evasion. This coat effectively protects the parasite from the harsh environment that is the mammalian bloodstream and leads to a persistent parasitemia if the infection remains untreated. The available treatment against African Trypanosomiasis involves the use of drugs that are themselves severely toxic and that can lead to the death of the patient. Most of the drugs used as treatment were developed in the early-to-mid 20th century, and while developments continue, they still represent the best medical means to fight the parasite. The discovery of a fluorescent VSG gave rise to speculations about a potential interaction between the VSG coat and components of the surrounding medium, that could also lead to a new approach in the treatment of African Trypanosomiasis that involves the VSG coat. The initially observed fluorescence signal was specific for a combination of a VSG called VSG’Y’ and the triphenylmethane (TPM) dye phenol red. Exchanging this TPM to a bromo-derivative led to the observation of another fluorescence effect termed trypanicidal effect which killed the parasite independent of the expressed VSG and suggests a structurally conserved feature between VSGs that could function as a specific drug target against T. b. brucei. The work of this thesis aims to identify the mechanisms that govern the unique VSG’Y’ fluorescence and the trypanocidal effect. Fluorescence experiments and protein mutagenesis of VSG’Y’ as well as crystallographic trials with a range of different VSGs were utilized in the endeavour to identify the binding mechanisms between TPM compounds and VSGs, to find potentially conserved structural features between VSGs and to identify the working mechanisms of VSG fluorescence and the trypanocidal effect. These trials have the potential to lead to the formulation of highly specific drugs that target the parasites VSG coat. During the crystallographic trials of this thesis, the complete structure of a VSG was solved experimentally for the first time. This complete structure is a key component in furthering the understanding of the mechanisms governing VSG coat formation. X-ray scattering techniques, involving x-ray crystallography and small angle x-ray scattering were applied to elucidate the first complete VSG structures, which reveal high flexibility of the protein and supplies insight into the importance of this flexibility in the formation of a densely packed but highly mobile surface coat. N2 - Trypanosoma brucei ist ein eukaryotischer Parasit welcher bei Menschen und Nutztieren schwere Krankheiten auslöst. Der Protist lebt extrazellulär im Blutstrom seines Säugetier-Wirtes, in welchem er unter konstantem Angriff durch das Wirts-Immunsystem steht. Als ausgeklügelte Methode zur Umgehung der Immunantwort besitzt der Parasit einen dichten Oberflächenmantel des variablen Oberflächen-Glycoproteins (VSG), welcher die Identifikation invariabler Oberflächenproteine durch das Immunsystem erschwert und Wirts-Immunität gegen den Parasiten verhindert. Der gebildete VSG-Mantel muss gleichzeitig eine hohe Dichte besitzt, um invariable Oberflächenproteine vor Immundetektion zu beschützen, und eine hohe Mobilität aufweisen, um ein schnelles Recycling des Schutzmantels während Immunantworten zu gewährleisten. Dieser Mantel schützt den Parasiten effektiv vor dem Wirts-Immunsystem und führt bei fehlender Behandlung des Patienten zur persistenten Parasitemie durch Trypanosoma brucei. Die verfügbaren Behandlung gegen die Afrikanische Trypanosomiasis beinhaltet die Benutzung von Medikamenten welche ihrerseits z.T. stark toxisch sind und den Tod des Patienten verursachen können. Ein Großteil der verfügbaren Medikamente wurden zu Beginn des letzten Jahrhunderts entwickelt und stellen trotz anhaltenden Entwicklungen noch immer die beste Lösung im Kampf gegen den Parasiten dar. Die Entdeckung eines fluoreszierenden VSGs deutete auf eine Interaktionen zwischen dem VSG Mantel und Bestandteilen des umgebenden Medium hin, welche die Entwicklung von Medikamenten mit dem VSG Mantel als Drug Target ermöglichen könnte. Das ursprünglich beobachtete Fluoreszenz-Signal war spezifisch für eine Kombination eines VSG namens VSG’Y’ und dem Triphenylmethan (TPM) Phenolrot. Der Austausch von Phenolrot gegen ein Brom-Derivat führte zur Beobachtung eines weiteren Fluoreszenz-Effekts, welcher unabhängig vom exprimierten VSG auftritt und letal für den Parasiten ist. Dieser so genannten Trypanozide Effekt lässt auf konservierte Strukturen schließen, welche von allen VSGs geteilt werden und als hochspezifisches Drug Target gegen T. b. brucei fungieren könnten. Das Ziel der vorliegenden Arbeit war es, die Mechanismen zu identifizieren, welche die einzigartige VSG’Y’-Fluoreszenz und den Trypanoziden Effekt auslösen. Fluoreszenz-Experimente und Protein-Mutagenese von VSG’Y’, sowie röntgenkristallographische Analysen mit mehreren unterschiedlichen VSGs wurden in dem Bestreben durchgeführt, die Bindung zwischen VSGs und TPMs zu charakterisieren, potentiell konservierte Strukturen von VSGs zu finden und die Mechanismen der einzigartigen VSG’Y’-Fluoreszenz und des Trypanoziden Effekts zu identifizieren. Diese Arbeiten haben das Potenzial die Formulierung hochspezifischer Medikamente mit VSGs als Drug Target anzutreiben. Im Rahmen der kristallographischen Analysen wurden die ersten vollständigen VSG Strukturen ermittelt, welche eine hohe Bedeutung für das Verständnis über die Bildung des VSG-Mantels haben. Die VSG Strukturen wurden u.a. per Röntgenkristallographie und Kleinwinkel-Röntgenstreuung aufgeschlüsselt und zeigten dass VSGs ein hohes Maß an Flexibilität besitzen. Diese Flexibilität ist wichtig für die Bildung eines dichten und hochmobilen VSG-Mantels. KW - Trypanosoma brucei brucei KW - Röntgenstrukturanalyse KW - Röntgen-Kleinwinkelstreuung KW - Mutagenese KW - Fluoreszenzmikroskopie KW - Variables Oberflächen Glycoprotein KW - VSG Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144775 ER - TY - THES A1 - Glogger, Marius T1 - Single-molecule fluorescence microscopy in live \(Trypanosoma\) \(brucei\) and model membranes T1 - Einzelmolekül-Fluoreszenzmikroskopie in lebenden \(Trypanosoma\) \(brucei\) und Modellmembranen N2 - Der eukaryotische Parasit Trypanosoma brucei hat komplexe Strategien entwickelt um der Immunantwort eines Wirtes zu entkommen und eine persistente Infektion innerhalb dessen aufrechtzuerhalten. Ein zentrales Element seiner Verteidigungsstrategie stützt sich auf die Schutzfunktion seines Proteinmantels auf der Zelloberfläche. Dieser Mantel besteht aus einer dichten Schicht aus identischen, Glykosylphosphatidylinositol (GPI)-verankerten variablen Oberflächenglykoproteinen (VSG). Der VSG Mantel verhindert die Erkennung der darunterliegenden, invarianten Epitope durch das Immunsystem. Obwohl es notwendig ist die Funktionsweise des VSG Mantels zu verstehen, vor allem um ihn als mögliches Angriffsziel gegen den Parasiten zu verwenden, sind seine biophysikalischen Eigenschaften bisher nur unzureichend verstanden. Dies ist vor allem der Tatsache geschuldet, dass die hohe Motilität der Parasiten mikroskopische Studien in lebenden Zellen bisher weitestgehend verhinderten. In der vorliegenden Arbeit wird nun hochmoderne Einzelmolekül-Fluoreszenzmikroskopie (EMFM) als Möglichkeit für mikroskopische Untersuchungen im Forschungsbereich der Trypanosomen vorgestellt. Die Arbeit umfasst Untersuchungen der VSG Dynamik unter definierten Bedingungen künstlicher Membransysteme. Es wurde zuerst der Einfluss der lateralen Proteindichte auf die VSG Diffusion untersucht. Experimente mittels Fluoreszenz- Wiederkehr nach irreversiblem Photobleichen und komplementäre Einzelmolekül- Verfolgungs Experimente offenbarten, dass ein molekularer Diffusionsschwellenwert existiert. Über diesem Schwellenwert wurde eine dichteabhänige Reduzierung des Diffusionskoeffizienten gemessen. Eine relative Quantifizierung der rekonstituierten VSGs verdeutlichte, dass der Oberflächenmantel der Trypanosomen sehr nahe an diesem Schwellenwert agiert. Der VSG Mantel ist optimiert um eine hohe Proteindichte bei gleichzeitiger hoher Mobilität der VSGs zu gewährleisten. Des Weiteren wurde der Einfluss der VSG N-Glykosylierung auf die Diffusion des Proteins quantitativ untersucht. Die Messungen ergaben, dass die N-Glykosylierung dazu beiträgt eine hohe Mobilität bei hohen Proteindichten aufrechtzuerhalten. Eine detaillierte Analyse von VSG Trajektorien offenbarte, dass zwei unterschiedliche Populationen frei diffundierender VSGs in der künstlichen Membran vorlagen. Kürzlich wurde entdeckt, dass VSGs zwei strukturell unterschiedliche Konformationen annehmen können. Die Messungen in der Arbeit stimmen mit diesen Beschreibungen überein. Die Ergebnisse der EMFM in künstlichen Membranen wurden durch VSG Einzelmolekül- Verfolgungs Experimente auf lebenden Zellen ergänzt. Es wurde eine hohe Mobilität und Dynamik einzelner VSGs gemessen, was die allgemein dynamische Natur des VSG Mantels verdeutlicht. Dies führte zu der Schlussfolgerung, dass der VSG Mantel auf lebenden Trypanosomen ein dichter und dennoch dynamischer Schutzmantel ist. Die Fähigkeit der VSGs ihre Konformation flexibel anzupassen, unterstützt das Erhalten der Fluidität bei variablen Dichten. Diese Eigenschaften des VSG Mantels sind elementar für die Aufrechterhaltung einer presistenden Infektion eines Wirtes. In dieser Arbeit werden des Weiteren verschiedene, auf Hydrogel basierende Einbettungsmethoden vorgestellt. Diese ermöglichten die Zellimmobilisierung und erlaubten EMFM in lebenden Trypanosomen. Die Hydrogele wiesen eine hohe Zytokompatibilität auf. Die Zellen überlebten in den Gelen für eine Stunde nach Beginn der Immobilisierung. Die Hydrogele erfüllten die Anforderungen der Superresolution Mikroskopie (SRM) da sie eine geringe Autofluoreszenz im Spektralbereich der verwendeten Fluorophore besaßen. Mittels SRM konnte nachgewiesen werden, dass die Hydrogele die Zellen effizient immobilisierten. Als erstes Anwendungsbeispiel der Methode wurde die Organisation der Plasmamembran in lebenden Trypanosomen untersucht. Die Untersuchung eines fluoreszenten Tracers in der inneren Membranschicht ergab, dass dessen Verteilung nicht homogen war. Es wurden spezifische Membrandomänen gefunden, in denen das Molekül entweder vermehrt oder vermindert auftrat. Dies führte zu der Schlussfolgerung, dass diese Verteilung durch eine Interaktion des Tracers mit Proteinen des zellulären Zytoskeletts zustande kam. Die in dieser Arbeit präsentierten Ergebnisse zeigen, dass EMFM erfolgreich für verschiedene biologische Untersuchungen im Forschungsfeld der Trypanosomen angewendet werden kann. Dies gilt zum Beispiel für die Untersuchung von der VSG Dynamik in künstlichen Membransystemen, aber auch für Studien in lebenden Zellen unter Verwendung der auf Hydrogelen basierenden Zelleinbettung. N2 - The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to escape the host immune response and maintain a persistent infection inside a host. One central feature of the parasite’s defense mechanism relies on the shielding function of their surface protein coat. This coat is composed of a dense arrangement of one type of glycosylphosphatidylinositol (GPI)-anchored variant surface glycoproteins (VSGs) which impair the identification of epitopes of invariant surface proteins by the immune system. In addition to the importance of understanding the function of the VSG coat and use it as a potential target to efficiently fight the parasite, it is also crucial to study its biophysical properties as it is not yet understood sufficiently. This is due to the fact that microscopic investigations on living trypanosomes are limited to a great extent by the intrinsic motility of the parasite. In the present study, state-of-the-art single-molecule fluorescence microscopy (SMFM) is introduced as a tool for biophysical investigations in the field of trypanosome research. The work encompasses studies of VSG dynamics under the defined conditions of an artificial supported lipid bilayer (SLB). First, the impact of the lateral protein density on VSG diffusion was systematically studied in SLBs. Ensemble fluorescence after photobleaching (FRAP) and complementary single-particle tracking experiments revealed that a molecular crowding threshold (MCT) exists, above which a density dependent decrease of the diffusion coefficient is measured. A relative quantification of reconstituted VSGs illustrated that the VSG coat of living trypanosomes operates very close to its MCT and is optimized for high density while maintaining fluidity. Second, the impact of VSG N-glycosylation on VSG diffusion was quantitatively investigated. N-glycosylation was shown to contribute to preserving protein mobility at high protein concentrations. Third, a detailed analysis of VSG trajectories revealed that two distinct populations of freely diffusing VSGs were present in a SLB, which is in agreement with the recent finding, that VSGs are able to adopt two main structurally distinct conformations. The results from SLBs were further complemented by single-particle tracking experiments of surface VSGs on living trypanosomes. A high mobility and free diffusion were measured on the cell surface, illustrating the overall dynamic nature of the VSG coat. It was concluded that the VSG coat on living trypanosomes is a protective structure that combines density and mobility, which is supported by the conformational flexibility of VSGs. These features are elementary for the persistence of a stable infection in the host. Different hydrogel embedding methods are presented, that facilitated SMFM in immobilized, living trypanosomes. The hydrogels were found to be highly cytocompatible for one hour after cross-linking. They exhibited low autofluorescence properties in the spectral range of the investigations, making them suitable for super-resolution microscopy (SRM). Exemplary SRM on living trypanosomes illustrated that the hydrogels efficiently immobilized the cells on the nanometer lever. Furthermore, the plasma membrane organization was studied in living trypanosomes. A statistical analysis of a tracer molecule inside the inner leaflet of the plasma membrane revealed that specific membrane domains exist, in which the tracer appeared accumulated or diluted. It was suggested that this distribution was caused by the interaction with proteins of the underlying cytoskeleton. In conclusion, SMFM has been successfully introduced as a tool in the field of trypanosome research. Measurements in model membranes facilitated systematic studies of VSG dynamics on the single-molecule level. The implementation of hydrogel immobilization allowed for the study of static structures and dynamic processes with high spatial and temporal resolution in living, embedded trypanosomes for the first time. KW - Single-molecule fluorescence microscopy KW - Trypanosoma brucei KW - Variant surface glycoprotein KW - Trypanosoma brucei KW - Virulenzfaktor KW - Zelloberfläche KW - Glykoproteine KW - Fluoreszenzmikroskopie Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-169222 ER -