TY - JOUR A1 - Hoeser, Thorsten A1 - Kuenzer, Claudia T1 - Object detection and image segmentation with deep learning on Earth observation data: a review-part I: evolution and recent trends JF - Remote Sensing N2 - Deep learning (DL) has great influence on large parts of science and increasingly established itself as an adaptive method for new challenges in the field of Earth observation (EO). Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in EO, this review gives an overview of the evolution of DL with a focus on image segmentation and object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections between the most important CNN architectures and cornerstones coming from CV in order to alleviate the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most popular DL frameworks and provide a summary of datasets in EO. By discussing well performing DL architectures on these datasets as well as reflecting on advances made in CV and their impact on future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and practical application in EO. KW - artificial intelligence KW - AI KW - machine learning KW - deep learning KW - neural networks KW - convolutional neural networks KW - CNN KW - image segmentation KW - object detection KW - Earth observation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205918 SN - 2072-4292 VL - 12 IS - 10 ER - TY - JOUR A1 - Huth, Juliane A1 - Gessner, Ursula A1 - Klein, Igor A1 - Yesou, Hervé A1 - Lai, Xijun A1 - Oppelt, Natascha A1 - Kuenzer, Claudia T1 - Analyzing water dynamics based on Sentinel-1 time series — a study for Dongting Lake wetlands in China JF - Remote Sensing N2 - In China, freshwater is an increasingly scarce resource and wetlands are under great pressure. This study focuses on China's second largest freshwater lake in the middle reaches of the Yangtze River — the Dongting Lake — and its surrounding wetlands, which are declared a protected Ramsar site. The Dongting Lake area is also a research region of focus within the Sino-European Dragon Programme, aiming for the international collaboration of Earth Observation researchers. ESA's Copernicus Programme enables comprehensive monitoring with area-wide coverage, which is especially advantageous for large wetlands that are difficult to access during floods. The first year completely covered by Sentinel-1 SAR satellite data was 2016, which is used here to focus on Dongting Lake's wetland dynamics. The well-established, threshold-based approach and the high spatio-temporal resolution of Sentinel-1 imagery enabled the generation of monthly surface water maps and the analysis of the inundation frequency at a 10 m resolution. The maximum extent of the Dongting Lake derived from Sentinel-1 occurred in July 2016, at 2465 km\(^2\), indicating an extreme flood year. The minimum size of the lake was detected in October, at 1331 km\(^2\). Time series analysis reveals detailed inundation patterns and small-scale structures within the lake that were not known from previous studies. Sentinel-1 also proves to be capable of mapping the wetland management practices for Dongting Lake polders and dykes. For validation, the lake extent and inundation duration derived from the Sentinel-1 data were compared with excerpts from the Global WaterPack (frequently derived by the German Aerospace Center, DLR), high-resolution optical data, and in situ water level data, which showed very good agreement for the period studied. The mean monthly extent of the lake in 2016 from Sentinel-1 was 1798 km\(^2\), which is consistent with the Global WaterPack, deviating by only 4%. In summary, the presented analysis of the complete annual time series of the Sentinel-1 data provides information on the monthly behavior of water expansion, which is of interest and relevance to local authorities involved in water resource management tasks in the region, as well as to wetland conservationists concerned with the Ramsar site wetlands of Dongting Lake and to local researchers. KW - Earth observation KW - SAR KW - Sentinel–1 KW - time series KW - Dongting Lake KW - water dynamics KW - floodpath lake KW - Ramsar Convention on Wetlands Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-205977 SN - 2072-4292 VL - 12 IS - 11 ER -