TY - JOUR A1 - Segerer, Gabriela A1 - Hadamek, Kerstin A1 - Zundler, Matthias A1 - Fekete, Agnes A1 - Seifried, Annegrit A1 - Mueller, Martin J. A1 - Koentgen, Frank A1 - Gessler, Manfred A1 - Jeanclos, Elisabeth A1 - Gohla, Antje T1 - An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation JF - Scientific Reports N2 - Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive Pgp\(^{D34N}\) mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation. KW - cell proliferation KW - DNA metabolism KW - lipidomics Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181094 VL - 6 ER - TY - JOUR A1 - Schäbler, Stefan A1 - Amatobi, Kelechi M. A1 - Horn, Melanie A1 - Rieger, Dirk A1 - Helfrich‑Förster, Charlotte A1 - Mueller, Martin J. A1 - Wegener, Christian A1 - Fekete, Agnes T1 - Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation JF - Cellular and Molecular Life Sciences N2 - The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC–MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants KW - circadian rhythms KW - metabolomics KW - mitochondrial activity KW - tryptophan KW - acylcarnitine KW - feeding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232432 SN - 1420-682X VL - 77 ER - TY - JOUR A1 - Ferber, Elena A1 - Gerhards, Julian A1 - Sauer, Miriam A1 - Krischke, Markus A1 - Dittrich, Marcus T. A1 - Müller, Tobias A1 - Berger, Susanne A1 - Fekete, Agnes A1 - Mueller, Martin J. T1 - Chemical Priming by Isothiocyanates Protects Against Intoxication by Products of the Mustard Oil Bomb JF - Frontiers in Plant Science N2 - In Brassicaceae, tissue damage triggers the mustard oil bomb i.e., activates the degradation of glucosinolates by myrosinases leading to a rapid accumulation of isothiocyanates at the site of damage. Isothiocyanates are reactive electrophilic species (RES) known to covalently bind to thiols in proteins and glutathione, a process that is not only toxic to herbivores and microbes but can also cause cell death of healthy plant tissues. Previously, it has been shown that subtoxic isothiocyanate concentrations can induce transcriptional reprogramming in intact plant cells. Glutathione depletion by RES leading to breakdown of the redox potential has been proposed as a central and common RES signal transduction mechanism. Using transcriptome analyses, we show that after exposure of Arabidopsis seedlings (grown in liquid culture) to subtoxic concentrations of sulforaphane hundreds of genes were regulated without depletion of the cellular glutathione pool. Heat shock genes were among the most highly up-regulated genes and this response was found to be dependent on the canonical heat shock factors A1 (HSFA1). HSFA1-deficient plants were more sensitive to isothiocyanates than wild type plants. Moreover, pretreatment of Arabidopsis seedlings with subtoxic concentrations of isothiocyanates increased resistance against exposure to toxic levels of isothiocyanates and, hence, may reduce the autotoxicity of the mustard oil bomb by inducing cell protection mechanisms. KW - autotoxicity KW - heat shock response KW - isothiocyanates KW - mustard oil bomb KW - reactive electrophilic species KW - redox homeostasis KW - sulforaphane Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207104 SN - 1664-462X VL - 11 ER - TY - JOUR A1 - Lambour, Benjamin A1 - Glenz, René A1 - Forner, Carmen A1 - Krischke, Markus A1 - Mueller, Martin J. A1 - Fekete, Agnes A1 - Waller, Frank T1 - Sphingolipid long-chain base phosphate degradation can be a rate-limiting step in long-chain base homeostasis JF - Frontiers in Plant Science N2 - Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels. KW - sphingolipid KW - long-chain base KW - plant sphingolipid metabolism KW - cell death KW - metabolic flux analysis KW - dihydrosphingosine-1-phosphate lyase KW - LC–MS/MS Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277679 SN - 1664-462X VL - 13 ER - TY - JOUR A1 - Amatobi, Kelechi M. A1 - Ozbek-Unal, Ayten Gizem A1 - Schäbler, Stefan A1 - Deppisch, Peter A1 - Helfrich-Förster, Charlotte A1 - Mueller, Martin J. A1 - Wegener, Christian A1 - Fekete, Agnes T1 - The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition JF - Journal of Lipid Research N2 - Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analyzed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wild-type flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period01 clock mutants. In wild-type flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of the targeted lipids peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wild-type flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs, and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality. KW - hemolymph lipids KW - lipidomics KW - circadian rhythm KW - feeding KW - locomotor activity KW - light-driven metabolism Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-349961 VL - 64 IS - 10 ER -