TY - JOUR A1 - Werner, Rudolf A. A1 - Sheikhbahaei, Sara A1 - Jones, Krystyna M. A1 - Javadi, Mehrbod S. A1 - Solnes, Lilja B. A1 - Ross, Ashley E. A1 - Allaf, Mohamad E. A1 - Pienta, Kenneth J. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Micheal A. A1 - Rowe, Steven P. T1 - Patterns of uptake of prostate-specific membrane antigen (PSMA)-targeted \(^{18}\)F-DCFPyL in peripheral ganglia JF - Annals of Nuclear Medicine N2 - Objective: Radiotracers targeting prostate-specific membrane antigen (PSMA) have increasingly been recognized as showing uptake in a number of normal structures, anatomic variants, and non-prostate-cancer pathologies. We aimed to explore the frequency and degree of uptake in peripheral ganglia in patients undergoing PET with the PSMA-targeted agent \(^{18}\)F-DCFPyL. Methods: A total of 98 patients who underwent \(^{18}\)F-DCFPyL PET/CT imaging were retrospectively analyzed. This included 76 men with prostate cancer (PCa) and 22 patients with renal cell carcinoma (RCC; 13 men, 9 women). Scans were evaluated for uptake in the cervical, stellate, celiac, lumbar and sacral ganglia. Maximum standardized uptake value corrected to body weight (SUV\(_{max}\)), and maximum standardized uptake value corrected to lean body mass (SUL\(_{max}\)) were recorded for all ganglia with visible uptake above background. Ganglia-to-background ratios were calculated by dividing the SUV\(_{max}\) and SUL\(_{max}\) values by the mean uptake in the ascending aorta (Aortamean) and the right gluteus muscle (Gluteusmean). Results: Overall, 95 of 98 (96.9%) patients demonstrated uptake in at least one of the evaluated peripheral ganglia. With regard to the PCa cohort, the most frequent sites of radiotracer accumulation were lumbar ganglia (55/76, 72.4%), followed by the cervical ganglia (51/76, 67.1%). Bilateral uptake was found in the majority of cases [lumbar 44/55 (80%) and cervical 30/51 (58.8%)]. Additionally, discernible radiotracer uptake was recorded in 50/76 (65.8%) of the analyzed stellate ganglia and in 45/76 (59.2%) of the celiac ganglia, whereas only 5/76 (6.6%) of the sacral ganglia demonstrated \(^{18}\)F-DCFPyL accumulation. Similar findings were observed for patients with RCC, with the most frequent locations of radiotracer uptake in both the lumbar (20/22, 90.9%) and cervical ganglia (19/ 22, 86.4%). No laterality preference was found in mean PSMA-ligand uptake for either the PCa or RCC cohorts. Conclusion: As PSMA-targeted agents become more widely disseminated, the patterns of uptake in structures that are not directly relevant to patients’ cancers must be understood. This is the first systematic evaluation of the uptake of \(^{18}\)F-DCFPyL in ganglia demonstrating a general trend with a descending frequency of radiotracer accumulation in lumbar, cervical, stellate, celiac, and sacral ganglia. The underlying biology that leads to variability of PSMA-targeted radiotracers in peripheral ganglia is not currently understood, but may provide opportunities for future research. KW - 18F-DCFPL KW - Positronen-Emissions-Tomografie KW - Prostata KW - PSMA KW - Ganglia KW - Pitfall KW - PET KW - Tracer KW - Radiotracer KW - Imaging pitfalls KW - Prostate Cancer Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166971 SN - 0914-7187 VL - 31 IS - 9 ER - TY - INPR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Leal, Jeffrey P. A1 - Higuchi, Takahiro A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on \(^{18}\)F-DCFPyL PET/CT Imaging T2 - Journal of Nuclear Medicine N2 - Objectives: Recently, the standardized reporting and data system for prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging studies, termed PSMA-RADS version 1.0, was introduced. We aimed to determine the interobserver agreement for applying PSMA-RADS to imaging interpretation of 18F-DCFPyL PET examinations in a prospective setting mimicking the typical clinical work-flow at a prostate cancer referral center. Methods: Four readers (two experienced readers (ER, > 3 years of PSMA-targeted PET interpretation experience) and two inexperienced readers (IR, < 1 year of experience)), who had all read the initial publication on PSMA-RADS 1.0, assessed 50 18F-DCFPyL PET/computed tomography (CT) studies independently. Per scan, a maximum of 5 target lesions were selected by the observers and a PSMA-RADS score for every target lesion was recorded. No specific pre-existing conditions were placed on the selection of the target lesions, although PSMA-RADS 1.0 suggests that readers focus on the most highly avid or largest lesions. An overall scan impression based on PSMA-RADS was indicated and interobserver agreement rates on a target lesion-based, on an organ-based, and on an overall PSMA-RADS score-based level were computed. Results: The number of target lesions identified by each observer were as follows: ER 1, 123; ER 2, 134; IR 1, 123; and IR 2, 120. Among those selected target lesions, 125 were chosen by at least two individual observers (all four readers selected the same target lesion in 58/125 (46.4%) instances, three readers in 40/125 (32%) and two observers in 27/125 (21.6%) instances). The interobserver agreement for PSMA-RADS scoring among identical target lesions was good (intraclass correlation coefficient (ICC) for four, three and two identical target lesions, ≥0.60, respectively). For lymph nodes, an excellent interobserver agreement was derived (ICC=0.79). The interobserver agreement for an overall scan impression based on PSMA-RADS was also excellent (ICC=0.84), with a significant difference for ER (ICC=0.97) vs. IR (ICC=0.74, P=0.005). Conclusions: PSMA-RADS demonstrates a high concordance rate in this study, even among readers with different levels of experience. This suggests that PSMA-RADS can be effectively used for communication with clinicians and can be implemented in the collection of data for large prospective trials. KW - 18F-DCFPyL KW - Positronen-Emissions-Tomografie KW - PSMA-RADS KW - interreader KW - interobserver KW - PSMA KW - prostate cancer KW - RADS KW - reporting and data system KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167788 SN - 0161-5505 N1 - This research was originally published in JNM. Rudolf A. Werner, Ralph A. Bundschuh, Lena Bundschuh, Mehrbod S. Javadi, Jeffrey P. Leal, Takahiro Higuchi, Kenneth J. Pienta, Andreas K. Buck, Martin G. Pomper, Michael A. Gorin, Constantin Lapa and Steven P. Rowe. Interobserver Agreement for the Standardized Reporting System PSMA-RADS 1.0 on 18F-DCFPyL PET/CT Imaging. J Nucl Med 2018;59:1857-1864 © SNMMI. ER - TY - INPR A1 - Yin, Yafu A1 - Werner, Rudolf A. A1 - Higuchi, Takahiro A1 - Lapa, Constantin A1 - Pienta, Kenneth J. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. T1 - Follow-Up of Lesions with Equivocal Radiotracer Uptake on PSMA-Targeted PET in Patients with Prostate Cancer: Predictive Values of the PSMA-RADS-3A and PSMARADS- 3B Categories T2 - Journal of Nuclear Medicine N2 - Purpose: Prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging has become commonly utilized in patients with prostate cancer (PCa). The PSMA reporting and data system version 1.0 (PSMA-RADS version 1.0) categorizes lesions on the basis of the likelihood of PCa involvement, with PSMA-RADS-3A (soft tissue) and PSMA-RADS-3B (bone) lesions being indeterminate for the presence of disease. We retrospectively reviewed the imaging follow-up of such lesions to determine the rate at which they underwent changes suggestive of underlying PCa. Methods: PET/CT imaging with \(^{18}\)F-DCFPyL was carried out in 110 patients with PCa and lesions were categorized according to PSMA-RADS Version 1.0. 56/110 (50.9%) patients were determined to have indeterminate PSMA-RADS-3A or PSMA-RADS-3B lesions and 22/56 (39.3%) patients had adequate follow-up to be included in the analysis. The maximum standardized uptake values (SUV\(_{max}\)) of the lesions were obtained and the ratios of SUV\(_{max}\) of the lesions to SUV\(_{mean}\) of blood pool (SUV\(_{max}\)-lesion/SUV\(_{mean}\)-bloodpool) were calculated. Pre-determined criteria were used to evaluate the PSMA-RADS-3A and PSMA-RADS-3B lesions on follow-up imaging to determine if they demonstrated evidence of underlying malignancy. Results: A total of 46 lesions in 22 patients were considered indeterminate for PCa (i.e. PSMA-RADS-3A (32 lesions) or PSMA-RADS-3B (14 lesions)) and were evaluable on follow-up imaging. 27/46 (58.7%) lesions demonstrated changes on follow-up imaging consistent with the presence of underlying PCa at baseline. These lesions included 24/32 (75.0%) PSMA-RADS-3A lesions and 3/14 (21.4%) lesions categorized as PSMA-RADS-3B. The ranges of SUVmax and SUVmax-lesion/SUVmean-bloodpool overlapped between those lesions demonstrating changes consistent with malignancy on follow-up imaging and those lesions that remained unchanged on follow-up. Conclusion: PSMA-RADS-3A and PSMA-RADS-3B lesions are truly indeterminate in that proportions of findings in both categories demonstrate evidence of malignancy on follow-up imaging. Overall, PSMA-RADS-3A lesions are more likely than PSMA-RADS-3B lesions to represent sites of PCa and this information should be taken into when guiding patient therapy. KW - PSMA-RADS-3B KW - Positronen-Emissions-Tomografie KW - prostate-specific membrane antigen KW - prostate cancer KW - PSMA-targeted PET KW - PSMA-RADS-3A Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167594 SN - 0161-5505 N1 - This research was originally published in JNM. Yafu Yin, Rudolf A. Werner, Takahiro Higuchi, Constantin Lapa, Kenneth J. Pienta, Martin G. Pomper, Michael A. Gorin, Steven P. Rowe. Follow-Up of Lesions with Equivocal Radiotracer Uptake on PSMA-Targeted PET in Patients with Prostate Cancer: Predictive Values of the PSMA-RADS-3A and PSMA-RADS-3B Categories. J Nucl Med. 2019;60:511-516 © SNMMI. ER - TY - INPR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging T2 - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - Virchow Node KW - PSMA-PET KW - Virchow Node KW - Positron Emission Tomography KW - Prostate Cancer KW - PET Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161103 SN - 0090-4295 N1 - This is the accepted manuscript of Rudolf Werner, Christian Andree, Mehrbod S. Javadi, Constantin Lapa, Andreas K. Buck, Takahiro Higuchi, Martin G. Pomper, Michael A.Gorin, Steven P.Rowe, Kenneth J. Pienta: A Voice From the Past: Re-Discovering the Virchow Node with PSMA-Targeted 18F-DCFPyL PET Imaging. Published in Urology 117(2018), p. 18-21. https://doi.org/10.1016/j.urology.2018.03.030 N1 - Die finale Version dieses Artikels steht unter https://doi.org/10.1016/j.urology.2018.03.030 oder https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-164632 open access zur Verfügung. ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Andree, Christian A1 - Javadi, Mehrbod S. A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Higuchi, Takahiro A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Rowe, Steven P. A1 - Pienta, Kenneth J. T1 - A Voice From the Past: Re-Discovering the Virchow Node with PSMA-targeted \(^{18}\)F-DCFPyL PET Imaging JF - Urology - The Gold Journal N2 - No abstract available. KW - 18F-DCFPyL KW - PET KW - PSMA-PET KW - Positron Emission Tomography KW - Prostate Cancer KW - Virchow Node Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164632 SN - 0090-4295 VL - 117 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, Alexander A1 - Sheikhbahaei, Sara A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - MI-RADS: Molecular Imaging Reporting and Data Systems – A Generalizable Framework for Targeted Radiotracers with Theranostic Implications JF - Annals of Nuclear Medicine N2 - Both prostate-specific membrane antigen (PSMA)- and somatostatin receptor (SSTR)-targeted positron emission tomography (PET) imaging agents for staging and restaging of prostate carcinoma or neuroendocrine tumors, respectively, are seeing rapidly expanding use. In addition to diagnostic applications, both classes of radiotracers can be used to triage patients for theranostic endoradiotherapy. While interpreting PSMA- or SSTR-targeted PET/computed tomography (CT) scans, the reader has to be aware of certain pitfalls. Adding to the complexity of the interpretation of those imaging agents, both normal biodistribution, and also false-positive and -negative findings differ between PSMA- and SSTR-targeted PET radiotracers. Herein summarized under the umbrella term molecular imaging reporting and data systems (MI-RADS), two novel RADS classifications for PSMA- and SSTR-targeted PET imaging are described (PSMA- and SSTR-RADS). Both framework systems may contribute to increase the level of a reader’s confidence and to navigate the imaging interpreter through indeterminate lesions, so that appropriate workup for equivocal findings can be pursued. Notably, PSMA- and SSTR-RADS are structured in a reciprocal fashion, i.e. if the reader is familiar with one system, the other system can readily be applied as well. In the present review we will discuss the most common pitfalls on PSMA- and SSTR-targeted PET/CT, briefly introduce PSMA- and SSTR-RADS, and define a future role of the umbrella framework MI-RADS compared to other harmonization systems. KW - PET KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine tumor KW - prostate-specific membrane antigen (PSMA) KW - somatostatin receptor (SSTR) KW - positron emission tomography KW - theranostics KW - standardization KW - RADS KW - reporting and data systems KW - personalized medicine Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166995 SN - 0914-7187 ER - TY - INPR A1 - Werner, Rudolf A. A1 - Bundschuh, Ralph A. A1 - Bundschuh, Lena A1 - Fanti, Stefano A1 - Javadi, Mehrbod S. A1 - Higuchi, Takahiro A1 - Weich, A. A1 - Pienta, Kenneth J. A1 - Buck, Andreas K. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Herrmann, Ken A1 - Lapa, Constantin A1 - Rowe, Steven P. T1 - Novel Structured Reporting Systems for Theranostic Radiotracers T2 - Journal of Nuclear Medicine N2 - Standardized reporting is more and more routinely implemented in clinical practice and such structured reports have a major impact on a large variety of medical fields, e.g. laboratory medicine, pathology, and, recently, radiology. Notably, the field of nuclear medicine is constantly evolving, as novel radiotracers for numerous clinical applications are developed. Thus, framework systems for standardized reporting in this field may a) increase clinical acceptance of new radiotracers, b) allow for inter- and intra-center comparisons for quality assurance, and c) may be used in (global) multi-center studies to ensure comparable results and enable efficient data abstraction. In the last two years, several standardized framework systems for positron emission tomography (PET) radiotracers with potential theranostic applications have been proposed. These include systems for prostate-specific membrane antigen (PSMA)-targeted PET agents for the diagnosis and treatment of prostate cancer (PCa) and somatostatin receptor (SSTR)-targeted PET agents for the diagnosis and treatment of neuroendocrine neoplasias. In the present review, those standardized framework systems for PSMA- and SSTR-targeted PET will be briefly introduced followed by an overview of their advantages and limitations. In addition, potential applications will be defined, approaches to validate such concepts will be proposed, and future perspectives will be discussed. KW - standardized reporting KW - Positronen-Emissions-Tomografie KW - prostate cancer KW - neuroendocrine neoplasia KW - 68Ga-DOTATATE KW - 68Ga-DOTATOC KW - 68Ga-DOTANOC KW - somatostatin receptor KW - SSTR KW - prostate-specific membrane antigen KW - PSMA KW - RADS KW - PSMA-RADS KW - SSTR-RADS KW - MI-RADS KW - PROMISE Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-174629 SN - 0161-5505 N1 - This research was originally published in JNM. Authors: Rudolf A. Werner, Ralph A. Bundschuh, Lena Bundschuh, Stefano Fanti, Mehrbod S. Javadi, Takahiro Higuchi, A. Weich, Kenneth J. Pienta, Andreas K. Buck, Martin G. Pomper, Michael A. Gorin, Ken Herrmann, Constantin Lapa, Steven P. Rowe. Novel Structured Reporting Systems for Theranostic Radiotracers. J Nucl Med May 1, 2019 vol. 60 no. 5 577-584 © SNMMI. ER - TY - JOUR A1 - Khatri, Wajahat A1 - Chung, Hyun Woo A1 - Werner, Rudolf A. A1 - Leal, Jeffrey P. A1 - Pienta, Kenneth J. A1 - Lodge, Martin A. A1 - Gorin, Michael A. A1 - Pomper, Martin G. A1 - Rowe, Steven P. T1 - Effect of point-spread function reconstruction for indeterminate PSMA-RADS-3A lesions on PSMA-targeted PET imaging of men with prostate cancer JF - Diagnostics N2 - Purpose: Prostate-specific membrane antigen (PSMA) positron emission tomography (PET) is emerging as an important modality for imaging patients with prostate cancer (PCa). As with any imaging modality, indeterminate findings will arise. The PSMA reporting and data system (PSMA-RADS) version 1.0 codifies indeterminate soft tissue findings with the PSMA-RADS-3A moniker. We investigated the role of point-spread function (PSF) reconstructions on categorization of PSMA-RADS-3A lesions. Methods: This was a post hoc analysis of an institutional review board approved prospective trial. Around 60 min after the administration of 333 MBq (9 mCi) of PSMA-targeted \(^{18}\)F-DCFPyL, patients underwent PET/computed tomography (CT) acquisitions from the mid-thighs to the skull vertex. The PET data were reconstructed with and without PSF. Scans were categorized according to PSMA-RADS version 1.0, and all PSMA-RADS-3A lesions on non-PSF images were re-evaluated to determine if any could be re-categorized as PSMA-RADS-4. The maximum standardized uptake values (SUVs) of the lesions, mean SUVs of blood pool, and the ratios of those values were determined. Results: A total of 171 PSMA-RADS-3A lesions were identified in 30 patients for whom both PSF reconstructions and cross-sectional imaging follow-up were available. A total of 13/171 (7.6%) were re-categorized as PSMA-RADS-4 lesions with PSF reconstructions. A total of 112/171 (65.5%) were found on follow-up to be true positive for PCa, with all 13 of the re-categorized lesions being true positive on follow-up. The lesions that were re-categorized trended towards having higher SUV\(_{max}\)-lesion and SUV\(_{max}\)-lesion/SUV\(_{mean}\)-blood-pool metrics, although these relationships were not statistically significant. Conclusions: The use of PSF reconstructions for \(^{18}\)F-DCFPyL PET can allow the appropriate re-categorization of a small number of indeterminate PSMA-RADS-3A soft tissue lesions as more definitive PSMA-RADS-4 lesions. The routine use of PSF reconstructions for PSMA-targeted PET may be of value at those sites that utilize this technology. KW - prostate-specific membrane antigen KW - reporting and data system KW - positron emission tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236528 SN - 2075-4418 VL - 11 IS - 4 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Habacha, Bilêl A1 - Lütje, Susanne A1 - Bundschuh, Lena A1 - Higuchi, Takahiro A1 - Hartrampf, Philipp A1 - Serfling, Sebastian E. A1 - Derlin, Thorsten A1 - Lapa, Constantin A1 - Buck, Andreas K. A1 - Essler, Markus A1 - Pienta, Kenneth J. A1 - Eisenberger, Mario A. A1 - Markowski, Mark C. A1 - Shinehouse, Laura A1 - AbdAllah, Rehab A1 - Salavati, Ali A1 - Lodge, Martin A. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Bundschuh, Ralph A. A1 - Rowe, Steven P. T1 - High SUVs Have More Robust Repeatability in Patients with Metastatic Prostate Cancer: Results from a Prospective Test-Retest Cohort Imaged with \(^{18}\)F-DCFPyL JF - Molecular Imaging N2 - No abstract available. KW - SUV Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-300748 VL - 2022 ER - TY - JOUR A1 - Garg, Tushar A1 - Werner, Rudolf A. A1 - Chung, Hyun Woo A1 - Khatri, Wajahat A1 - Pienta, Kenneth J. A1 - Pomper, Martin G. A1 - Gorin, Michael A. A1 - Saad, Elie A1 - Rowe, Steven P. T1 - Association of true positivity with serum prostate-specific antigen levels and other clinical factors in indeterminate PSMA-RADS-3A lesions identified on \(^{18}\)F-DCFPyL PET/CT scans JF - Tomography N2 - The use of prostate-specific membrane antigen targeted PET imaging for the evaluation of prostate cancer has increased significantly in the last couple of decades. When evaluating these imaging findings based on the PSMA reporting and data system version 1.0, which categorize lesions based on their likelihood of prostate cancer involvement, PSMA-RADS-3A lesions are commonly seen, which are indeterminate for the presence of disease. A total of 28 patients with 171 PSMA-RADS-3A lesions on \(^{18}\)F-DCFPyL PET/CT scans from June 2016 to May 2017 who had follow-up cross-sectional imaging over time were included in this study. The PSA levels of patients with PSMA-RADS-3A lesions were categorized into four groups, 0–0.2, 0.2–1, 1–2, and >2 ng/mL. The pre-operative Gleason score of these patients was categorized into two groups, Gleason score < 7 or ≥7. The median age for these patients was 72.5 years (range 59–81). The median PSA value for patients with positive lesions was significantly higher than those with negative lesions (5.8 ng/mL vs. 0.2 ng/mL, p < 0.0001). The lesion positivity rate was significantly higher in patients with PSA > 1 ng/mL (18.2% vs. 81.9%, p < 0.001). On ROC analysis, the highest classification accuracy was seen at PSA ≥ 0.6 ng/mL of 80.12% (95% CI = 73.69–86.16%), and the area under the curve was 71.32% (95% CI = 61.9–80.7%, p < 0.0001). A total of 96.4% (108/112) of patients with positive lesions and 86.4% (51/59) of patients with negative lesions had a PSMA-RADS-4/5 lymph node on the initial \(^{18}\)F-DCFPyL PET/CT scan (p = 0.02). In patients with a Gleason score ≥ 7, the presence of positive PSMA-RADS-3A lesions was higher, compared to negative PSMA-RADS-3A lesions (p = 0.049). Higher PSA levels in patients with PSMA-RADS-3A lesions can point towards the presence of true positivity. PSA levels may be considered in deciding whether to call an indeterminate lesion on PSMA PET. KW - prostate cancer KW - prostate-specific antigen KW - PSMA-RADS KW - \(^{18}\)F-DCFPyL PET/CT KW - Gleason score Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290510 SN - 2379-139X VL - 8 IS - 6 SP - 2639 EP - 2647 ER -