TY - JOUR A1 - Schönbrodt-Stitt, Sarah A1 - Ahmadian, Nima A1 - Kurtenbach, Markus A1 - Conrad, Christopher A1 - Romano, Nunzio A1 - Bogena, Heye R. A1 - Vereecken, Harry A1 - Nasta, Paolo T1 - Statistical Exploration of SENTINEL-1 Data, Terrain Parameters, and in-situ Data for Estimating the Near-Surface Soil Moisture in a Mediterranean Agroecosystem JF - Frontiers in Water N2 - Reliable near-surface soil moisture (θ) information is crucial for supporting risk assessment of future water usage, particularly considering the vulnerability of agroforestry systems of Mediterranean environments to climate change. We propose a simple empirical model by integrating dual-polarimetric Sentinel-1 (S1) Synthetic Aperture Radar (SAR) C-band single-look complex data and topographic information together with in-situ measurements of θ into a random forest (RF) regression approach (10-fold cross-validation). Firstly, we compare two RF models' estimation performances using either 43 SAR parameters (θNov\(^{SAR}\)) or the combination of 43 SAR and 10 terrain parameters (θNov\(^{SAR+Terrain}\)). Secondly, we analyze the essential parameters in estimating and mapping θ for S1 overpasses twice a day (at 5 a.m. and 5 p.m.) in a high spatiotemporal (17 × 17 m; 6 days) resolution. The developed site-specific calibration-dependent model was tested for a short period in November 2018 in a field-scale agroforestry environment belonging to the “Alento” hydrological observatory in southern Italy. Our results show that the combined SAR + terrain model slightly outperforms the SAR-based model (θNov\(^{SAR+Terrain}\) with 0.025 and 0.020 m3 m\(^{−3}\), and 89% compared to θNov\(^{SAR}\) with 0.028 and 0.022 m\(^3\) m\(^{−3}\, and 86% in terms of RMSE, MAE, and R2). The higher explanatory power for θNov\(^{SAR+Terrain}\) is assessed with time-variant SAR phase information-dependent elements of the C2 covariance and Kennaugh matrix (i.e., K1, K6, and K1S) and with local (e.g., altitude above channel network) and compound topographic attributes (e.g., wetness index). Our proposed methodological approach constitutes a simple empirical model aiming at estimating θ for rapid surveys with high accuracy. It emphasizes potentials for further improvement (e.g., higher spatiotemporal coverage of ground-truthing) by identifying differences of SAR measurements between S1 overpasses in the morning and afternoon. KW - near-surface soil moisture KW - Sentinel-1 single-look complex data KW - SAR backscatters KW - terrain parameters KW - Alento hydrological observatory KW - Mediterranean environment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-259062 VL - 3 ER - TY - JOUR A1 - Usman, Muhammad A1 - Mahmood, Talha A1 - Conrad, Christopher A1 - Bodla, Habib Ullah T1 - Remote Sensing and modelling based framework for valuing irrigation system efficiency and steering indicators of consumptive water use in an irrigated region JF - Sustainability N2 - Water crises are becoming severe in recent times, further fueled by population increase and climate change. They result in complex and unsustainable water management. Spatial estimation of consumptive water use is vital for performance assessment of the irrigation system using Remote Sensing (RS). For this study, its estimation is done using the Soil Energy Balance Algorithm for Land (SEBAL) approach. Performance indicators including equity, adequacy, and reliability were worked out at various spatiotemporal scales. Moreover, optimization and sustainable use of water resources are not possible without knowing the factors mainly influencing consumptive water use of major crops. For that purpose, random forest regression modelling was employed using various sets of factors for site-specific, proximity, and cropping system. The results show that the system is underperforming both for Kharif (i.e., summer) and Rabi (i.e., winter) seasons. Performance indicators highlight poor water distribution in the system, a shortage of water supply, and unreliability. The results are relatively good for Rabi as compared to Kharif, with an overall poor situation for both seasons. Factors importance varies for different crops. Overall, distance from canal, road density, canal density, and farm approachability are the most important factors for explaining consumptive water use. Auditing of consumptive water use shows the potential for resource optimization through on-farm water management by the targeted approach. The results are based on the present situation without considering future changes in canal water supply and consumptive water use under climate change. KW - consumptive water use KW - performance assessment KW - indicator importance assessment KW - water management KW - Pakistan Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219358 SN - 2071-1050 VL - 12 IS - 22 ER - TY - JOUR A1 - Dhillon, Maninder Singh A1 - Dahms, Thorsten A1 - Kuebert-Flock, Carina A1 - Borg, Erik A1 - Conrad, Christopher A1 - Ullmann, Tobias T1 - Modelling Crop Biomass from Synthetic Remote Sensing Time Series: Example for the DEMMIN Test Site, Germany JF - Remote Sensing N2 - This study compares the performance of the five widely used crop growth models (CGMs): World Food Studies (WOFOST), Coalition for Environmentally Responsible Economies (CERES)-Wheat, AquaCrop, cropping systems simulation model (CropSyst), and the semi-empiric light use efficiency approach (LUE) for the prediction of winter wheat biomass on the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN) test site, Germany. The study focuses on the use of remote sensing (RS) data, acquired in 2015, in CGMs, as they offer spatial information on the actual conditions of the vegetation. Along with this, the study investigates the data fusion of Landsat (30 m) and Moderate Resolution Imaging Spectroradiometer (MODIS) (500 m) data using the spatial and temporal reflectance adaptive reflectance fusion model (STARFM) fusion algorithm. These synthetic RS data offer a 30-m spatial and one-day temporal resolution. The dataset therefore provides the necessary information to run CGMs and it is possible to examine the fine-scale spatial and temporal changes in crop phenology for specific fields, or sub sections of them, and to monitor crop growth daily, considering the impact of daily climate variability. The analysis includes a detailed comparison of the simulated and measured crop biomass. The modelled crop biomass using synthetic RS data is compared to the model outputs using the original MODIS time series as well. On comparison with the MODIS product, the study finds the performance of CGMs more reliable, precise, and significant with synthetic time series. Using synthetic RS data, the models AquaCrop and LUE, in contrast to other models, simulate the winter wheat biomass best, with an output of high R2 (>0.82), low RMSE (<600 g/m\(^2\)) and significant p-value (<0.05) during the study period. However, inputting MODIS data makes the models underperform, with low R2 (<0.68) and high RMSE (>600 g/m\(^2\)). The study shows that the models requiring fewer input parameters (AquaCrop and LUE) to simulate crop biomass are highly applicable and precise. At the same time, they are easier to implement than models, which need more input parameters (WOFOST and CERES-Wheat). KW - crop growth models KW - Landsat KW - MODIS KW - data fusion KW - STARFM KW - climate parameters KW - winter wheat Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207845 SN - 2072-4292 VL - 12 IS - 11 ER - TY - RPRT A1 - Conrad, Christopher A1 - Morper-Busch, Lucia A1 - Netzband, Maik A1 - Teucher, Mike A1 - Schönbrodt-Stitt, Sarah A1 - Schorcht, Gunther A1 - Dukhovny, Viktor T1 - Инструмент для выработки обоснованных решений в вопросах земле- и водопользования T1 - Monitoring jeffektivnosti vodopol'zovanija v Central'noj Azii Instrument dlja obosnovannoj vyrabotki reshenij v voprosah zemle- i vodopol'zovanija N2 - WUEMoCA — научный инструмент веб-кар¬тографирования для мониторинга эф¬фек¬тивности земле- и водопользования на территориях орошаемого земледелия стран трансграничного бассейна Араль¬ского моря (Казахстана, Кыргызстана, Таджикистана, Туркменистана, Узбеки¬стана и Афганистана). Путём интеграции спутниковых данных по землепользованию, растениеводству и потреблению воды с гидрологическими и экономическими данными создаётся целый набор показателей. Инструмент полезен для выработки масштабных решений в вопросах распределения воды и землепользования, а также может применяться во многих практических сферах, в которых требуются независимые данные о конкретных обширных территориях. N2 - WUEMoCA — nauchnyj instrument veb-kar¬tografirovanija dlja monitoringa jef¬fek¬tivnosti zemle- i vodopol'zovanija na territorijah oroshaemogo zemledelija stran transgranichnogo bassejna Aral'¬skogo morja (Kazahstana, Kyrgyzstana, Tadzhikistana, Turkmenistana, Uzbeki¬stana i Afganistana). Putjom integracii sputnikovyh dannyh po zemlepol'zovaniju, rastenievodstvu i potrebleniju vody s gidrologicheskimi i jekonomicheskimi dannymi sozdajotsja celyj nabor pokazatelej. Instrument polezen dlja vyrabotki masshtabnyh reshenij v voprosah raspredelenija vody i zemlepol'zovanija, a takzhe mozhet primenjat'sja vo mnogih prakticheskih sferah, v kotoryh trebujutsja nezavisimye dannye o konkretnyh obshirnyh territorijah. KW - Remote Sensing KW - WebGIS KW - Information System KW - Central Asia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192006 ER - TY - RPRT A1 - Conrad, Christopher A1 - Morper-Busch, Lucia A1 - Netzband, Maik A1 - Teucher, Mike A1 - Schönbrodt-Stitt, Sarah A1 - Schorcht, Gunther A1 - Dukhovny, Viktor T1 - WUEMoCA Water Use Efficiency Monitor in Central Asia Informed Decision-Making in Land and Water Resources Management N2 - WUEMoCA is an operational scientific webmapping tool for the regional monitoring of land and water use efficiency in the irrigated croplands of the transboundary Aral Sea Basin that is shared by Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, Uzbekistan, and Afghanistan. Satellite data on land use, crop pro-duction and water consumption is integrated with hydrological and economic information to provide of a set indicators. The tool is useful for large-scale decisions on water distribution or land use, and may be seen as demonstrator for numerous applications in practice, that require independent area-wide spatial information. KW - Zentralasien KW - Information system KW - Remote Sensing KW - WebGIS KW - Information System KW - Central Asia Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-191934 ER - TY - JOUR A1 - Usman, Muhammad A1 - Reimann, Thomas A1 - Liedl, Rudolf A1 - Abbas, Azhar A1 - Conrad, Christopher A1 - Saleem, Shoaib T1 - Inverse parametrization of a regional groundwater flow model with the aid of modelling and GIS: test and application of different approaches JF - ISPRS International Journal of Geo-Information N2 - The use of inverse methods allow efficient model calibration. This study employs PEST to calibrate a large catchment scale transient flow model. Results are demonstrated by comparing manually calibrated approaches with the automated approach. An advanced Tikhonov regularization algorithm was employed for carrying out the automated pilot point (PP) method. The results indicate that automated PP is more flexible and robust as compared to other approaches. Different statistical indicators show that this method yields reliable calibration as values of coefficient of determination (R-2) range from 0.98 to 0.99, Nash Sutcliffe efficiency (ME) range from 0.964 to 0.976, and root mean square errors (RMSE) range from 1.68 m to 1.23 m, for manual and automated approaches, respectively. Validation results of automated PP show ME as 0.969 and RMSE as 1.31 m. The results of output sensitivity suggest that hydraulic conductivity is a more influential parameter. Considering the limitations of the current study, it is recommended to perform global sensitivity and linear uncertainty analysis for the better estimation of the modelling results. KW - pilot-point-approach KW - inverse parameterization KW - groundwater KW - sensitivity analysis KW - tikhonov regularization KW - PEST Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-175721 VL - 7 IS - 1 ER - TY - JOUR A1 - Mahmoud, Mahmoud Ibrahim A1 - Duker, Alfred A1 - Conrad, Christopher A1 - Thiel, Michael A1 - Ahmad, Halilu Shaba T1 - Analysis of Settlement Expansion and Urban Growth Modelling Using Geoinformation for Assessing Potential Impacts of Urbanization on Climate in Abuja City, Nigeria JF - Remote Sensing N2 - This study analyzed the spatiotemporal pattern of settlement expansion in Abuja, Nigeria, one of West Africa’s fastest developing cities, using geoinformation and ancillary datasets. Three epochs of Land-use Land-cover (LULC) maps for 1986, 2001 and 2014 were derived from Landsat images using support vector machines (SVM). Accuracy assessment (AA) of the LULC maps based on the pixel count resulted in overall accuracy of 82%, 92% and 92%, while the AA derived from the error adjusted area (EAA) method stood at 69%, 91% and 91% for 1986, 2001 and 2014, respectively. Two major techniques for detecting changes in the LULC epochs involved the use of binary maps as well as a post-classification comparison approach. Quantitative spatiotemporal analysis was conducted to detect LULC changes with specific focus on the settlement development pattern of Abuja, the federal capital city (FCC) of Nigeria. Logical transitions to the urban category were modelled for predicting future scenarios for the year 2050 using the embedded land change modeler (LCM) in the IDRISI package. Based on the EAA, the result showed that urban areas increased by more than 11% between 1986 and 2001. In contrast, this value rose to 17% between 2001 and 2014. The LCM model projected LULC changes that showed a growing trend in settlement expansion, which might take over allotted spaces for green areas and agricultural land if stringent development policies and enforcement measures are not implemented. In conclusion, integrating geospatial technologies with ancillary datasets offered improved understanding of how urbanization processes such as increased imperviousness of such a magnitude could influence the urban microclimate through the alteration of natural land surface temperature. Urban expansion could also lead to increased surface runoff as well as changes in drainage geography leading to urban floods. KW - land-cover change KW - settlement expansion KW - support vector machines KW - urban growth modelling KW - climate impact Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146644 VL - 8 IS - 3 ER - TY - JOUR A1 - Conrad, Christopher A1 - Schönbrodt-Stitt, Sarah A1 - Löw, Fabian A1 - Sorokin, Denis A1 - Paeth, Heiko T1 - Cropping Intensity in the Aral Sea Basin and Its Dependency from the Runoff Formation 2000–2012 JF - Remote Sensing N2 - This study is aimed at a better understanding of how upstream runoff formation affected the cropping intensity (CI: number of harvests) in the Aral Sea Basin (ASB) between 2000 and 2012. MODIS 250 m NDVI time series and knowledge-based pixel masking that included settlement layers and topography features enabled to map the irrigated cropland extent (iCE). Random forest models supported the classification of cropland vegetation phenology (CVP: winter/summer crops, double cropping, etc.). CI and the percentage of fallow cropland (PF) were derived from CVP. Spearman’s rho was selected for assessing the statistical relation of CI and PF to runoff formation in the Amu Darya and Syr Darya catchments per hydrological year. Validation in 12 reference sites using multi-annual Landsat-7 ETM+ images revealed an average overall accuracy of 0.85 for the iCE maps. MODIS maps overestimated that based on Landsat by an average factor of ~1.15 (MODIS iCE/Landsat iCE). Exceptional overestimations occurred in case of inaccurate settlement layers. The CVP and CI maps achieved overall accuracies of 0.91 and 0.96, respectively. The Amu Darya catchment disclosed significant positive (negative) relations between upstream runoff with CI (PF) and a high pressure on the river water resources in 2000–2012. Along the Syr Darya, reduced dependencies could be observed, which is potentially linked to the high number of water constructions in that catchment. Intensified double cropping after drought years occurred in Uzbekistan. However, a 10 km × 10 km grid of Spearman’s rho (CI and PF vs. upstream runoff) emphasized locations at different CI levels that are directly affected by runoff fluctuations in both river systems. The resulting maps may thus be supportive on the way to achieve long-term sustainability of crop production and to simultaneously protect the severely threatened environment in the ASB. The gained knowledge can be further used for investigating climatic impacts of irrigation in the region. KW - irrigated cropland extent KW - cropland vegetation phenology KW - land and water management KW - modis KW - landsat central asia Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-147701 VL - 8 IS - 630 ER - TY - JOUR A1 - Ayanu, Yohannes A1 - Conrad, Christopher A1 - Jentsch, Anke A1 - Koellner, Thomas T1 - Unveiling undercover cropland inside forests using landscape variables: a supplement to remote sensing image classification JF - PLoS ONE N2 - The worldwide demand for food has been increasing due to the rapidly growing global population, and agricultural lands have increased in extent to produce more food crops. The pattern of cropland varies among different regions depending on the traditional knowledge of farmers and availability of uncultivated land. Satellite images can be used to map cropland in open areas but have limitations for detecting undergrowth inside forests. Classification results are often biased and need to be supplemented with field observations. Undercover cropland inside forests in the Bale Mountains of Ethiopia was assessed using field observed percentage cover of land use/land cover classes, and topographic and location parameters. The most influential factors were identified using Boosted Regression Trees and used to map undercover cropland area. Elevation, slope, easterly aspect, distance to settlements, and distance to national park were found to be the most influential factors determining undercover cropland area. When there is very high demand for growing food crops, constrained under restricted rights for clearing forest, cultivation could take place within forests as an undercover. Further research on the impact of undercover cropland on ecosystem services and challenges in sustainable management is thus essential. KW - climate change KW - land-cover classification KW - bale mountains national park KW - sub-saharan africa KW - agroforestry systems KW - biodiversity conservation KW - ecosystem services KW - topographic aspect KW - wheat-varieties Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151686 VL - 10 IS - 6 ER - TY - JOUR A1 - Zoungrana, Benewinde Jean-Bosco A1 - Conrad, Christopher A1 - Amekudzi, Leonard K. A1 - Thiel, Michael A1 - Dapola Da, Evariste A1 - Forkuor, Gerald A1 - Löw, Fabian T1 - Multi-Temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa JF - Remote Sensing N2 - Accurate quantification of land use/cover change (LULCC) is important for efficient environmental management, especially in regions that are extremely affected by climate variability and continuous population growth such as West Africa. In this context, accurate LULC classification and statistically sound change area estimates are essential for a better understanding of LULCC processes. This study aimed at comparing mono-temporal and multi-temporal LULC classifications as well as their combination with ancillary data and to determine LULCC across the heterogeneous landscape of southwest Burkina Faso using accurate classification results. Landsat data (1999, 2006 and 2011) and ancillary data served as input features for the random forest classifier algorithm. Five LULC classes were identified: woodland, mixed vegetation, bare surface, water and agricultural area. A reference database was established using different sources including high-resolution images, aerial photo and field data. LULCC and LULC classification accuracies, area and area uncertainty were computed based on the method of adjusted error matrices. The results revealed that multi-temporal classification significantly outperformed those solely based on mono-temporal data in the study area. However, combining mono-temporal imagery and ancillary data for LULC classification had the same accuracy level as multi-temporal classification which is an indication that this combination is an efficient alternative to multi-temporal classification in the study region, where cloud free images are rare. The LULCC map obtained had an overall accuracy of 92%. Natural vegetation loss was estimated to be 17.9% ± 2.5% between 1999 and 2011. The study area experienced an increase in agricultural area and bare surface at the expense of woodland and mixed vegetation, which attests to the ongoing deforestation. These results can serve as means of regional and global land cover products validation, as they provide a new validated data set with uncertainty estimates in heterogeneous ecosystems prone to classification errors. KW - Burkina Faso KW - West Africa KW - multi-temporal images KW - mono-temporal image KW - ancillary data KW - LULCC Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125866 VL - 7 IS - 9 ER - TY - JOUR A1 - Dietz, Andreas J. A1 - Conrad, Christopher A1 - Kuenzer, Claudia A1 - Gesell, Gerhard A1 - Dech, Stefan T1 - Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data JF - Remote Sensing N2 - Central Asia consists of the five former Soviet States Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan, therefore comprising an area of similar to 4 Mio km(2). The continental climate is characterized by hot and dry summer months and cold winter seasons with most precipitation occurring as snowfall. Accordingly, freshwater supply is strongly depending on the amount of accumulated snow as well as the moment of its release after snowmelt. The aim of the presented study is to identify possible changes in snow cover characteristics, consisting of snow cover duration, onset and offset of snow cover season within the last 28 years. Relying on remotely sensed data originating from medium resolution imagers, these snow cover characteristics are extracted on a daily basis. The resolution of 500-1000 m allows for a subsequent analysis of changes on the scale of hydrological sub-catchments. Long-term changes are identified from this unique dataset, revealing an ongoing shift towards earlier snowmelt within the Central Asian Mountains. This shift can be observed in most upstream hydro catchments within Pamir and Tian Shan Mountains and it leads to a potential change of freshwater availability in the downstream regions, exerting additional pressure on the already tensed situation. KW - AVHRR data KW - satellite KW - Northern Xinjiang KW - cloud KW - products KW - Central Asia KW - climate change KW - Amu Darya KW - Syr Darya KW - Tian Shan KW - snow KW - snow cover KW - snow cover duration KW - Pamir KW - AVHRR KW - MODIS KW - algorithm KW - validation Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114470 SN - 2072-4292 VL - 6 IS - 12 ER - TY - JOUR A1 - Forkuor, Gerald A1 - Conrad, Christopher A1 - Thiel, Michael A1 - Ullmann, Tobias A1 - Zoungrana, Evence T1 - Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa N2 - Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10%–15% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75% are achievable. KW - random forest KW - crop mapping KW - agriculture KW - West Africa KW - RapidEye KW - TerraSAR-X Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113070 ER - TY - JOUR A1 - Dubovyk, Olena A1 - Menz, Gunter A1 - Conrad, Christopher A1 - Kann, Elena A1 - Machwitz, Miriam A1 - Khamzina, Asia T1 - Spatio-temporal analyses of cropland degradation in the irrigated lowlands of Uzbekistan using remote-sensing and logistic regression modeling JF - Environmental Monitoring and Assessment N2 - Advancing land degradation in the irrigated areas of Central Asia hinders sustainable development of this predominantly agricultural region. To support decisions on mitigating cropland degradation, this study combines linear trend analysis and spatial logistic regression modeling to expose a land degradation trend in the Khorezm region, Uzbekistan, and to analyze the causes. Time series of the 250-m MODIS NDVI, summed over the growing seasons of 2000–2010, were used to derive areas with an apparent negative vegetation trend; this was interpreted as an indicator of land degradation. About one third (161,000 ha) of the region’s area experienced negative trends of different magnitude. The vegetation decline was particularly evident on the low-fertility lands bordering on the natural sandy desert, suggesting that these areas should be prioritized in mitigation planning. The results of logistic modeling indicate that the spatial pattern of the observed trend is mainly associated with the level of the groundwater table (odds = 330 %), land-use intensity (odds = 103 %), low soil quality (odds = 49 %), slope (odds = 29 %), and salinity of the groundwater (odds = 26 %). Areas, threatened by land degradation, were mapped by fitting the estimated model parameters to available data. The elaborated approach, combining remote-sensing and GIS, can form the basis for developing a common tool for monitoring land degradation trends in irrigated croplands of Central Asia. KW - lower reaches of Amu Darya River KW - cropland abandonment KW - linear trend analysis KW - logistic regression modeling KW - MODIS KW - NDVI Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129912 VL - 185 IS - 6 ER - TY - JOUR A1 - Conrad, Christopher A1 - Fritsch, Sebastian A1 - Zeidler, Julian A1 - Rücker, Gerd A1 - Dech, Stefan T1 - Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data N2 - The overarching goal of this research was to explore accurate methods of mapping irrigated crops, where digital cadastre information is unavailable: (a) Boundary separation by object-oriented image segmentation using very high spatial resolution (2.5–5 m) data was followed by (b) identification of crops and crop rotations by means of phenology, tasselled cap, and rule-based classification using high resolution (15–30 m) bi-temporal data. The extensive irrigated cotton production system of the Khorezm province in Uzbekistan, Central Asia, was selected as a study region. Image segmentation was carried out on pan-sharpened SPOT data. Varying combinations of segmentation parameters (shape, compactness, and color) were tested for optimized boundary separation. The resulting geometry was validated against polygons digitized from the data and cadastre maps, analysing similarity (size, shape) and congruence. The parameters shape and compactness were decisive for segmentation accuracy. Differences between crop phenologies were analyzed at field level using bi-temporal ASTER data. A rule set based on the tasselled cap indices greenness and brightness allowed for classifying crop rotations of cotton, winter-wheat and rice, resulting in an overall accuracy of 80 %. The proposed field-based crop classification method can be an important tool for use in water demand estimations, crop yield simulations, or economic models in agricultural systems similar to Khorezm. KW - Geologie KW - object-based classification KW - segmentation KW - tasselled cap KW - Uzbekistan KW - irrigated agriculture KW - multi-sensor Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-68630 ER - TY - THES A1 - Conrad, Christopher T1 - Fernerkundungsbasierte Modellierung und hydrologische Messungen zur Analyse und Bewertung der landwirtschaftlichen Wassernutzung in der Region Khorezm (Usbekistan) T1 - Remote sensing based modeling and hydrological measurements for the assessment of agricultural water use in the Khorezm region (Uzbekistan) N2 - Die Bewässerungslandwirtschaft in Mittelasien ist geprägt von schwerwiegenden ökologischen und ökonomischen Problemen. Zur Verbesserung der Situation auf dem hydrologischen Sektor wird daher seitens der mittelasiatischen Interstate Commission for Water Coordination (ICWC) die Einführung des Integrated Water Resource Management (IWRM) gefordert. Wichtige Herausforderungen zur Optimierung der Wassernutzung im Aralsee-Becken sind dabei die Schaffung von Transparenz sowie von Möglichkeiten zur Überwachung der Landnutzung und der Wasserentnahme in den Bewässerungssystemen. Im Detail fokussierte diese Arbeit auf das Bewässerungssystem der Region Khorezm im Unterlauf des Amu Darya südlich des Aralsees. Die Arbeit zielte darauf ab, (1) objektive und konsistente Datengrundlagen zum Monitoring der Landnutzung und des Wasserverbrauchs innerhalb des Bewässerungslandes zu schaffen und (2) auf Basis dieser Ergebnisse die Funktionsweise des Bewässerungssystems zu verstehen sowie die Land- und Wassernutzung der Region zu bewerten. Um diese Ziele zu erreichen, wurden Methoden der Fernerkundung und der Hydrologie miteinander kombiniert. Fernerkundliche Schlüsselgrößen der Arbeit waren die Kartierung der agrarischen Landnutzung und die Modellierung der saisonalen tatsächlichen Evapotranspiration. Es wurde eine Methode vorgestellt, die eine Unterscheidung verschiedener Landnutzungen und Fruchtfolgen der Region durch die temporale Segmentierung von Zeitserien aus 8-tägigen Kompositen von 250 m-Daten des MODIS-Sensors ermöglicht. Durch die mehrfache Anwendung von Recursive Partitioning And Regression Trees auf deskriptive Statistiken von Zeitseriensegmenten konnte eine hohe Stabilität erzielt werden (overall accuracy: 91 %, Kappa-Koeffizient: 0,9). Täglich von MODIS aufgezeichnete Landoberflächentemperaturen (LST) bildeten die Basis zur fernerkundungsbasierten Modellierung der saisonalen tatsächlichen Evapotranspiration (ETact) für die sommerliche Vegetationsperiode. Aufgrund der hohen zeitlichen und groben räumlichen Auflösung der verwendeten MODIS-Daten von 1 km waren leichte Modifikationen des zur Modellierung eingesetzten Surface Energy Balance Algortihm for Land (SEBAL) erforderlich. Zur Modellierung von ETact wurden MODIS-Produkte (LST, Emissionsgrad, Albedo, NDVI und Blattflächenindex) und meteorologische Stationsdaten aus Khorezm verwendet. Die Modellierung des fühlbaren Wärmeflusses, einer Komponente der Energiebilanzgleichung an der Erdoberfläche, erfolgte mittels METRIC (High Resolution and Internalized Calibration), einer Variante des SEBAL. Die Landnutzungsklassifikation fungierte als zentraler Eingangsparameter, um eine automatisierte Auswahl der Ankerpunkte des Models sicherzustellen. Da innerhalb der MODIS-Auflösung aufgrund der Mischpixelproblematik keine homogen feuchten oder trockenen Bedingungen im Bewässerungsgebiet gefunden werden konnten, wurden die Landnutzungsklassifikation, der NDVI und die ASCE-Referenz-Evapotranspiration zur Abschätzung des tatsächlichen Zustands an den Ankerpunkten herangezogen. Weiterhin wurden umfassende Geländemessungen durchgeführt, um in der Vegetationsperiode 2005 die Zu- und Abflussmengen des Wasser von und nach Khorezm zu bestimmen. Die abschließende Bewertung der Land- und Wassernutzung basierte letztendlich auf der Bildung von Wasserbilanzen und der Berechnung anerkannter Performanceindikatoren wie der Ratio aus Drainage und Wasserentnahme oder der depleted fraction. Für die landwirtschaftliche Nutzung im Rayon Khorezm wurde für die Sommersaison 2005 eine Wasserentnahme von 5,38 km3 ermittelt. Damit übertrafen die Messergebnisse die offiziell verfügbaren Daten der ICWC um durchschnittlich 37 %. Auf die landwirtschaftliche Fläche bezogen ergab sich für Khorezm im Jahr 2005 eine mittlere Wasserentnahme von 22.782 m3/ha. In den Subsystemen schwankten diese Werte zwischen 17.000 m3/ha und 30.000 m3/ha. Allerdings konnte an den Systemgrenzen, an denen die Messungen durchgeführt werden, der aus den fernerkundungsbasierten Modellierungen auf WUA-Level erwartete abnehmende Gradient der Wasserentnahme zwischen Oberlauf und Unterlauf nicht nachvollzogen werden. Als Ursache für diese Diskrepanz sind vor allem die Versickerungsverluste im Kanalsystem zu nennen, die den Grundwasserkörper großräumig auffüllen und auf Feldebene nicht zur oberflächlichen Bewässerung zur Verfügung stehen. Monatliche Bilanzierungen und die Analyse der Performanceindikatoren führten zu denselben Ergebnissen. In dieser Arbeit konnte gezeigt werden, dass sich mit Methoden der Fernerkundung objektive und konsistente Daten der agrarischen Landnutzung und des Wasserverbrauchs für ein regionales Monitoring erstellen lassen. Da in den benachbarten Regionen gleiche atmosphärische Bedingungen und ähnliche Anbausorten anzutreffen sind, ist anzunehmen, dass beide Verfahren auch auf der Planungsebene in einem IWRM für die übrigen Mittel- und Unterläufe von Amu Darya und Syr Darya ein hohes Anwendungspotenzial besitzen. N2 - The recently founded states of Middle Asia face serious economical and ecological problems in irrigated agriculture. Thus, the introduction of the Integrated Water Resource Management (IWRM) is one of the major aims of the Interstate Commission for Water Coordination (ICWC) of Middle Asia. This study focuses on the irrigation and drainage systems of Khorezm, located in the lower Amu Darya Basin. The scientific gaols were (1) to generate objective and consistent data to measure agricultural land use and water consumption in irrigated areas of the Khorezm region and (2) to analyze the functioning of the irrigation system to assess the use of land and water. Remote sensing in combination with hydrological measurements and irrigation performance indicators were found suitable to achieve these aims. A method was developed to classify agricultural land use for the entire Khorezm region by temporal segmentation of 8-day 250 m MODIS time series. The application of Recursive Partitioning And Regression Tree (RPART) on temporal segments of the time series enabled stable results and portability with 91% overall accuracy and a Kappa coefficient of 0.9. Daily MODIS 1 km Land Surface Temperature (LST) data were used for modeling seasonal actual evapotranspiration (ETact) of the summer vegetation period. The Surface Energy Balance Algorithm for Land (SEBAL) was slightly modified to account for the coarse spatial resolution of MODIS data and for semi-operational purposes. MODIS 1 km land products (LST, emissivity, albedo, NDVI, and leaf area index), and meteorological data were combined for modeling ETact. The sensible heat flux was calculated according to the METRIC (Mapping EvapoTranspiration at High Resolution and Internalized Calibration) variant of SEBAL. Aggregated to MODIS 1 km scale, the land use classification was the determining parameter to select hot and cold anchor points needed to model sensible heat fluxes automatically. The probability to find completely dry or wet conditions within a 1 km grid is very low. Thus, classification results, NDVI, and ASCE-EWRI reference evapotranspiration (ETref) were used to adjust the estimations of the vertical temperature gradient at the best fitting anchor points (similar to METRIC). Furthermore, flow measurements were recorded for 2005 to generate a hydrological data set for balancing. The water balance was achieved by integrating the remotely sensed evapotranspiration. Additionally, widely accepted irrigation performance indicators such as relative evapotranspiration, drainage over inflow ratio, and depleted fraction were calculated on a monthly base to investigate the functioning of the canal network in Khorezm on regional scale. For agricultural use, withdrawals of 5.38 km3 were measured in the vegetation period 2005. The values were on average 37% higher than the official data of the ICWC. Within the system boundaries water amounts of 22,782 m3/ha were available for irrigation. Comparisons between subsystems showed regional disparities of withdrawals ranging from 17,000 m3/ha to 30,000 m3/ha. The upstream-downstream gradient of irrigation water supply expected from the remote sensing modeling results could not be found at the regional water distribution level. In comparison with the remote sensing results it can be summarized that water consumption at the field level (MODIS pixel) or WUA level does not reflect the water intake at the upstream distribution nodes. Monthly water balances and performance indicators highlighted similar results. During the leaching and the main irrigation period in 2005, an increase of soil moisture and groundwater was recorded. The discharge of groundwater followed the irrigation phase in September. However, even in the main irrigation season (July and August), the average drainage over intake ratio is 45% and in the upper part of the irrigation system almost reaches 60%. This concludes a high potential for water saving. Although high discharges in the regional drainage system were found poor drainage systems are reported at the field level. Evidently the main drainage canals of the region work as large scale groundwater collectors rather than fulfill their designated use to collect saline water from the field level. The study proofed the importance to collect reliable and consistent data for hydrological analyses in Middle Asia. For the Khorezm region the presented remote sensing methods indicated their ability to supply data for hydrological monitoring on a regional scale. Remotely sensed crop rotation patterns and water consumption offered the view on field and WUA levels inside the irrigation water distribution administrations. Both methods are portable to regions with similar crops and good climatic conditions, for instance the middle and lower course of the Amu Darya and Syr Darya River. KW - Charism KW - Fernerkundung KW - Wassernutzung KW - Landwirtschaft KW - Fernerkundung KW - Hydrologische Modellierung KW - Geographische Informationssysteme KW - Landnutzungsklassifikation KW - Usbekistan KW - remote sensing KW - hydrological modelling KW - geographical information systems KW - land use classification KW - Uzbekistan Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-20790 ER -