TY - JOUR A1 - Jesaitis, A. J. A1 - Klotz, Karl-Norbert T1 - Cytoskeletal regulation of chemotactic receptors: Molecular complexation of N-formyl peptide receptors with G proteins and actin N2 - Signal transduction via receptors for N-formylmethionyl peptide chemoattractants (FPR) on human neutrophils is a highly regulated process. It involves direct interaction of receptors with heterotrimeric G-proteins and may be under thc control of cytoskeletal clemcnts. Evidencc exists suggesting that thc cytoskeleton and/or the membrane ske1eton determines the distribution of FPR in the plane of the plasma membrane, thus controlling FPR accessibility to different protcins in functionally distinct membrane domains. In desensitized cells, FPR are restricted to domains which are depleted of G proteins but enriched in cytoskeletal proteins such as actin and fodrin. Thus, the G protein signal transduction partners of FPR become inacccssible to the agonist-occupied receptor, preventing cell activation. We are investigating the molecular basis for the interaction of FPR with the membrane skeleton, and our results suggest that FPR, and possibly other receptors, may directly bind to cytoskeletal proteins such as actin. KW - Immunologie KW - chemotaxis KW - formyl peptides KW - receptors KW - actin KW - G proteins KW - cytoskeleton KW - membrane skeleton Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79673 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - The interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton is energy-dependent N2 - Desensitization of N-fonnyl peptide chemoattractant receptors (FPR) in human neutrophils is thought to be achieved by lateral segregation of receptors and G proteins within the plane of the plasma membrane resulting in an interruption of the signalling cascade. Direct coupling of FPR to membrane skeletal actin appears to be the basis of this process~ however, the molecular mechanism is unknown. In this study we investigated the effect of energy depletion on formation of FPR-membrane skeleton complexes. In addition the effect of the protein kinase C inhibitor stauroporine and the phosphatase inhibitor okadaic acid on coupling of FPR to the membrane skeletonwas studied. Human neutrophils were desensitized using the photoreactive agonist N-formy1-met-leu-phe-1ys-N'[\(^{125}\)I]2(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (fMLFK-[\(^{125}\)I]ASD) after ATP depletion with NaF or after incubation with the respective inhibitors. The interaction of FPR with the membrane skeleton was studied by Sedimentation of the membrane skeleton-associated receptors in sucrose density gradients. Energy depletion of the cells markedly inhibited the formation of FPR-membrane skeleton complexes. This does not appear tobe related to inhibition of protein phosphorylation due to ATP depletion because inhibition of protein kinases and phosphatases bad no significant effect on coupling of FPR to the membrane skeleton. We conclude, therefore, that coupling of FPR to the membrane skeleton is an energy,dependent process which does not appear to require modification of the receptor protein by phosphorylation. KW - Toxikologie KW - Chemotactic receptors KW - G proteins KW - N-formyl peptides KW - signal transduction KW - desensitization KW - membrane skeleton KW - receptor-G protein coupling. Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60499 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - Physical coupling of N-formyl peptide chemoattractant receptors to G protein is not affected by desensitization N2 - Desensitization of N-formyl peptide chemoattractant receptors (FPR) in human neutrophils results in association of these receptors to the membrane skeleton. This is thought to be the critical event in the lateral segregation of receptors and guanyl nucleotide-binding proteins (G proteins) within the plane of the plasma membrane resulting in an interruption of the signaling cascade. In this study we probed the interaction of FPR with G protein in human neutrophils that were desensitized to various degrees. Human neutrophils were desensitized using the photoreactive agonist N-formyl-met-leu-phelys- N\(^\epsilon\)-[\(^{125}\)I]2(p-azidosalicylamido )ethyl-1 ,3 '-dithiopropionate (/MLFK-[\(^{125}\)I]ASD). The interaction if FPR with G protein was studied via a reconstitution assay and subsequent analysis of FPR-G protein complexes in sucrose density gradients. FPR-G protein complexes were reconstituted with solubilized FPR from partially and fully desensitized neutrophils with increasing concentrations of Gi purified from bovine brain. The respective EC\(_{50}\) values for reconstitution were similar to that determined for FPR from unstimulated neutrophils (Bommakanti RK et al., J Bio[ Chem 267: 757~7581, 1992). We conclude, therefore, that the affinity of the interaction of FPR with G protein is not affected by desensitization, consistent with the model of lateral segregation of FPR and G protein as a mechanism of desensitization. KW - Toxikologie KW - chemotactic receptors KW - G proteins KW - N-formyl peptides KW - signal transduction KW - receptor-G protein coupling Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60483 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - Neutrophil chemoattractant receptors and the membrane skeleton N2 - Signal transduction via receptors for N-formylmethionyl peptide chemoattractants (FPR) on human neutrophils is a highly regulated process which involves participation of cytoskeletal elements. Evidence exists suggesting that the cytoskeleton and/or the membrane skeleton controls the distributJon of FPR in the plane of the plasma membrane, thus controlling the accessibility of FPR to different proteins in functionally distinct domains. In desensitized cells, FPR are restricted todomains which are depleted of G proteins but enriched in cytoskeletal proteins such as actin and fodrin. Thus, the G protein signal transduction partners of FPR become inaccessible to the agonist-occupied receptor, preventing cell activation. The mechanism of interaction of FPR with the membrane skeleton is poorly understood but evidence is accumulating that suggests a direct binding of FPR (and other receptors) to cytoskeletal proteins such as actin. KW - Toxikologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60471 ER - TY - JOUR A1 - Klotz, Karl-Norbert A1 - Krotec, K. L. A1 - Gripentrog, J. A1 - Jesaitis, A. J. T1 - Regulatory interaction of N-formyl peptide chemoattractant receptors with the membrane skeleton in human neutrophils N2 - The cytoskeleton and/or membrane skeleton has been implicated in the regulation of N-formyl peptide receptors. The coupling of these chemotactic receptors to the membrane skeleton was investigated in plasma membranes from unstimulated and desensitized human neutrophils using the photoreactive agonist N-formyl-met-leu-phelys-N\(^6\)-[\(^{125}\)I]2(p-azidosalicylamido)ethyl-1,3'-dithiopropionate (fMLFK-[\(^{125}\)I]ASD). When membranes of unstimulated cells were solubilized in Triton-X 100, a detergent that does not disrupt actin filaments, only 50% of the photoaffinity-labeled receptors were solubilized sedimenting in sucrose density gradients at a rate consistent with previous reports. The remainder were found in the pellet fraction along with the membrane skeletal actin. Solubilization of the membranes in the presence of p-chloromercuriphenylsulfonic acid, elevated concentrations of KCI, or deoxyribonuclease I released receptors in parallel with actin. When membranes from neutrophils, desensitized by incubation with fMLFK-e 251]ASD at 15°C, were solubilized, nearly all receptors were recovered in the pellet fraction. lncubation of cells with the Iigand at 4°C inhibited desensitization partially and prevented the conversion of a significant fraction of receptors to the form associated with the membrane skeletal pellet. ln these separations the photoaffinity-labeled receptors not sedimenting to the pellet cosedimented with actin. Approximately 25% of these receptors could be immunosedimented with antiactin antibodies suggesting that N-formyl peptide receptors may interact directly with actin. These results are consistent with a regulatory role for the interaction of chemotactic N-formyl peptide receptors with actin of the membrane skeleton. KW - Toxikologie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60466 ER - TY - JOUR A1 - Bommakanti, R. K. A1 - Klotz, Karl-Norbert A1 - Dratz, E. A. A1 - Jesaitis, A. J. T1 - A carboxyl-terminal tail peptide of neutrophil chemotactic receptor disrupts its physical complex with G protein N2 - No abstract available KW - Toxikologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60456 ER - TY - JOUR A1 - Jesaitis, A. J. A1 - Erickson, R. W. A1 - Klotz, Karl-Norbert A1 - Bommakanti, R. K. A1 - Siemsen, D. W. T1 - Functional molecular complexes of human N-formyl peptide chemoattractant receptors and actin N2 - When human neutrophils become desensitized to formyl peptide chemoattractants, the receptors (FPR) for these peptides are converted to a high affinity, GTP-insensitive form that is associated with the Triton X-1 00- insoluble membrane skeleton from surface membrane domains. These domains are actin and fodrin-rich, but G protein-depfeted suggesting that FPR shuttling between G protein-enriched and depleted domains may control signal transduction. Todetermine the molecular basis for FPR interaction with the membrane skeleton, neutrophil subcellular fractions were screened for molecules that could bind photoaffinity-radioiodinated FPR solubilized in Triton X-1 00. These receptors showed a propensity to bind to a 41- to43-kDa proteinband on nitrocelluloseoverlays of SOS-PAGE-separated cytosol and plasma membrane fractions of neutrophils. This binding, as weil as FPR binding to purified neutrophil actin, was inhibited 50% by 0.6 \(\mu\)M free neutrophil cytosolic actin. Addition of greater than 1 \(\mu\)M G-actin to crude or lectin-purified Triton X-1 00 extracts of FPR from neutrophil membranes increased the sedimentationrate of a significant fraction of FPR two to three fold as measured by velocity sedimentation in Triton X-1 00-containing linear sucrose density gradients. Addition of anti-actin antibodies to FPR extracts caused a concentration-dependent immunoprecipitation of at least 65% of the FPR. More than 40% of the immunoprecipitated FPR was specifically retained on protein A affinity matrices. Membrane actin was stabilized to alkaline washing when membranes were photoaffinity labeled. Conversely, when purified neutrophil cytosolic actinwas added to membranes or their digitonin extracts, after prior depletion of actin by an alkaline membrane wash, photoaffinity labeling of FPR was increased two- to fourfold with an EC\(_{50}\) of approximately 0.1 \(\mu\)M actin. We conclude that FPR from human neutrophils may interact with actin in membranes to form Triton X-1 00-stable physical complexes. These complexes can accept additional G-actin monomers to form higher order molecular complexes. Formation of FPR-actin complexes in the neutrophil may play a role in the regulation of chemoattractantinduced activation or actin polymerization. KW - Toxikologie Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60445 ER - TY - JOUR A1 - Bommakanti, R. A1 - Bokoch, G. M. A1 - Tolley, J. O. A1 - Schreiber, R. E. A1 - Siemsen, D. W. A1 - Klotz, Karl-Norbert A1 - Jesaitis, A. J. T1 - Reconstitution of a physical complex between the N-formyl chemotactic peptide receptor and G protein: Inhibition by pertussis toxin-catalyzed ADP ribosylation N2 - Photoaffinity-labeled N-formyl chemotactic peptide receptors from human neutrophils solubilized in octyl glucoside exhibit two forms upon sucrose density gradient sedimentation, with apparent Sedimentation coefficients of approximately 4 and 7 S. Tbe 7 S form can be converted to the 4 S form by guanosine 5' -0- (3-thiotriphosphate) (GTP-yS) with an EC&o of -20 nM, suggesting that the 7 S form may represent a physical complex of the receptor with endogenous G protein (Jesaitis, A. J., Tolley, J. 0., Bokoch, G. M., and Allen, R. A. (1989) J. Cell Biol. 109, 2783-2790). To probe the nature of the 7 S form, we reconstituted the 7 S form from the 4 S form by adding purified G protein. The 4 S form, obtained by solubilizing GTP-yS-treated neutrophil plasma membranes, was incubated with purified (>95%) G. protein from bovine brain (containing both G\(_{ia1}\) and G\(_{ia2}\)) or with neutrophil G protein (G\(_a\)), and formation of the 7 S complex was analyzed on sucrose density gradients. The EC\(_{50}\) of 7 S complex formation induced by the two G proteins was 70 \(\pm\) 25 and 170 \(\pm\) 40 DM for G\(_a\) and G\(_1\), respectively. No complexation was measurable when bovine transducin (G\(_t\)) was used up to 30 times the EC\(_{50\) for G\(_a\). The EC\(_{50}\) for G\(_t\) was the same for receptors, obtained from formyl peptide-stimulated or unstimulated cells. The addition of 10 \(\mu\)M GTP-yS to the reconstituted 7 S complex caused a complete reversion of the receptor to the 4 S form, and anti-G\(_1\) peptide antisera immunosedimented the 7 S form. ADP-ribosylation of Gt prevented formation of the 7 S form even at 20 times the concentration of unribosylated G. normally used to attain 50% conversion to the 7 S form. These observations suggest that the 7 S species is a pbysical complex containing N-formyl chemotactic peptide receptor and G protein. KW - Toxikologie Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-60406 ER -