TY - JOUR A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Salzer, Manfred J. A1 - Schwabe, Ulrich T1 - Adenosine regulates the \(Ca^{2+} \) sensitivity of mast cell mediator release : (histamine secretion/inositol phosphates/calcium) JF - Proceedings of the National Academy of Sciences of the United States of America N2 - Mast cells release histamine and other mediators of allergy in response to stimulation of their IgE receptors. This release is generally thought to be mediated by an elevation of cytosolic \(Ca^{2+}\). Recent evidence suggests that there might be factors that modulate the coupling between \(Ca^{2+}\) levels and mediator release. The present report identifies adenosine as one such modulator. Adenosine and several of its metabolically stable analogues were shown to enhance histamine release from rat peritoneal mast cells in response to stimuli such as concanavalin A. Metabolizing endogenous adenosine with adenosine deaminase dampened the response to stimuli, whereas trapping endogenous adenosine inside mast cells with nucleoside-transport inhibitors markedly enhanced stimulated histamine release. The metabolically stable adenosine analogue 5' -(N-ethylcarboxamido)adenosine (NECA) did not affect the initial steps in the sequence from IgE-receptor activation to mediator release, which are generation of inositol trisphosphate and increase of cytosolic \(Ca^{2+}\). However, NECA did enhance the release induced in ATP-permeabilized cells by exogenous \(Ca^{2+}\), but it had no effect on the release induced by phorbol esters. These data suggest that adenosine sensitizes mediator release by a mechanism regulating stimulus-secretion coupling at a step distal to receptor activation and second-messenger generation. Y1 - 1988 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127883 VL - 85 ER - TY - JOUR A1 - Ott, Ilka A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Vogt-Moykopf, Ingolf A1 - Schwabe, Ulrich T1 - Effects of Adenosine on Histamine Release from Human Lung Fragments JF - International Archives of Allergy and Immunology N2 - The actions of adenosine on histamine release of human lung fragments were investigated. Histamine release was stimulated either with the calcium ionophore A 23187 orwith concanavalin A. Adenosine and its analogue 5'-N-ethylcarboxamidoadenosine alone had no significant effect on basal release or on the release elicited by A 23187 or concanavalin A. However, in the presence of the adenosine receptor antagonist 8-[4-[[[[(2-aminoethyl)amino]-carbonyl] methyloxy]-phenyl]-1,3-dipropylaxanthine (XAC), which itself did not affect the release, adenosine increased the stimulated histamine release. On the other hand, in the presence of the nucleoside transport inhibitor S-(p-nitrobenzyl)-6-thioninosine (NBTI), adenosine caused a reduction in stimulated histamine release. NBTI itself caused a stimulation of release. Thus, a stimulatory effect of adenosine was seen in the presence ofXAC, whereas an inhibitory effect was unmasked by NBTI. From these data it is concluded that adenosine exerts two opposing effects on histamine release in the human lung which neutralize each other: it inhibits release via a si te antagonized by XAC, which presumably represents an A2 adenosine receptor, and it stimulates release via a mechanism that is blocked by NBTI, suggesting that adenosine needs to reach the interior of cells to exert this effect. The slight stimulatory effect of NBTI alone demonstrates that trapping intracellularly formed adenosine inside mast cells leads to sufficient concentrations of adenosine to stimulate histamine release. These findings suggest an important bimodal role of adenosine in regulating histamine release in the human lung. KW - mast cells KW - adenosine KW - histamine release KW - human lung Y1 - 1982 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127877 VL - 98 ER - TY - CHAP A1 - Klotz, Karl-Norbert A1 - Keil, Roger A1 - Zimmer, Franz-Josef A1 - Schwabe, Ulrich T1 - Modulation of (§H) DPCPX binding to membrane-bound ans solubilized A1 adenosine receptors by guanine nucleotides N2 - No abstract available KW - Adenosinrezeptor Y1 - 1989 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86153 ER - TY - CHAP A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Maurer, K. A1 - Ott, I. A1 - Schwabe, Ulrich T1 - Effects of adenosine on mast cells N2 - No abstract available KW - Adenosin KW - Mastzelle Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86101 ER - TY - CHAP A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Schwabe, Ulrich T1 - Functional characterization of A1 adenoosine receptors by photoaffinity labelling N2 - The ligand-binding subunit ofthe A1 adenosine receptor has been identified in membranes with the photoaffinity Iabel R-2-azido-N6-p-hydroxyphenylisopropyladenosine (R-AHPIA). Covalent labelling ofthe A1 receptor can also be achieved in intact cells. The dissociation of the radioiodinated label (1251-AHPIA) from isolated rat fat cells was incomplete after UV irradiation, leaving about 20°/o of irreversible specific binding. Such covalent labelling of the receptor led to a concentration-dependent reduction of cellular cyclic AMP levels. This persistent effect of covalent labeHing occurred with an IC50 value of 9 nM, as compared to an IC50 value of 0.9 nM for the direct reduction of cyclic AMP Ievels by the ligand. The difference in the IC5o values can be explained by assuming spare receptors. This hypothesis was verified in binding studies using [ 3HJPIA as a radioligand. R-AHPIA inhibited binding of [3H)PIA to intact fat cells with a K1 value of about 20 nM, which is about 20 tim es high er than the corresponding IC50 value of cyclic AMP reduction. These data show that the A1 receptor is activated according to the occupancy theory. The high sensitivity of the activation in intact ceJis is due to a large number of spare receptors. KW - Adenosinrezeptor Y1 - 1987 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86097 ER - TY - JOUR A1 - Spielman, William S. A1 - Klotz, Karl-Norbert A1 - Arend, Lois J. A1 - Olson, Barbara A. A1 - LeVier, David G. A1 - Schwabe, Ulrich T1 - Characterization of adenosine A1 receptor in a cell line (28A) derived from the rabbit collecting tubule N2 - We have previously reported that in several renal cell types, adenosine receptor agonists inhibit adenylyl cyclase and activate phospholipase C via a pertussis toxin-sensitive G protein. In the present study, in 28A cells, both uf these adenosine receptor-mediated responses were inhibited by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). a highly selective A1 adenosine receptor antagonist. The binding characteristics of the adenosine A 1 receptor in the 28A renal cell line were studied using the radiolabeled antagonist f:1H]DPCPX to determine whether two separate binding sites could account for these responses. Saturation binding of [: 1H]DPCPX to 28A cell membranes revealed a single class of A1 binding sites with an apparent Kd value of 1.4 nM and maximal binding capacity of 64 fmol/mg protein. Competition experiments with a variety of adenosine agonists gave biphasic displacement curves with a pharmacological profile characteristic of A1 receptors. Comparison of [: 1H]DPCPX competition binding data from 28A cell membranes with rabbit brain membranes, a tissue with well-characterized A1 receptors, reveals that the A 1 receptor population in 28A cells has similar agonist binding affinities to the receptor population in brain but has a considerably lower density. Addition of guanosine ;)' -triphosphate ( 100 ,uM) to 28A cell membranes caused the competition curves to shift from biphasic to monophasic. indicating that the A1 receptors exist in two interconvertible affinity states because of their coupling to G proteins. In the absence of evidence for subpopulations of the A1 receptor, it appears that in 28A cells. A single A1 receptor population. As defined by ligand binding characteristics, couples via one or more pertussis toxin-sensitive guanine nucleotide binding proteins to two different biological signaling mechanisms. KW - calcium KW - phosphoinositides KW - adenosine 3',5'-cyclic monophosphate KW - receptor binding KW - signal transduction KW - G proteins Y1 - 1992 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86083 ER - TY - JOUR A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Schwabe, Ulrich T1 - Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling N2 - It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxyphenytisopropyladenosine [(R)-AHPIA] into the A, adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of celular cAMP Ieveis [Mol. Pharmacol. 30:403-409 (1986)]. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenytate cyclase Stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies in-dicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase Stimulation of up to SOOk of the control value. Similarly, the activation via these 10-20% of receptors occurs with a halflife that is only 2 times Ionger than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenytate cyclase Stimulation. These observations require a modification of the models of receptor-adenytate cyclase coupling, which is described in the accompanying paper [Mol. Pharmacol. 39:524-530 (1991)]. KW - Adenosinrezeptor Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86073 ER - TY - JOUR A1 - Wilken, Anke A1 - Klotz, Karl-Norbert A1 - Tawfik-Schlieper, Hoda A1 - Schwabe, Ulrich T1 - Pharmacological characterization of the adenylate cyclase-coupled adenosine receptor in isolated guinea pig atrial myocytes N2 - No abstract available. KW - Pharmakologie Y1 - 1990 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86061 ER - TY - JOUR A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Schwabe, Ulrich T1 - Effectes of temperature and membrane phase transitions on ligand binding to a2-receptors of human platelets N2 - The binding of agonists and antagonists to a2-adrenergic receptors of human platelets was studied. The receptors showed homogeneaus affinities for antagonists but two affinity states for the agonist (-)-epinephrine, which were modulated by guanine nucleotides. Van't Hoffplots of antagonist binding had a break point at about 18° and considerable diversity between 18° and 0°. Agonist binding to both affinity states showed a similar break point; agonist binding to the high affinity state was characterized by a large entropy component compared to the low affinity state. This entropy component was reduced at higher concentrations of sodium, indicating that it may be due to Iiberation of sodium ions. Measurements of the fluorescence of 1-anilin-8-naphthalenesulfonate showed thermotropic phase transitions of theplatelet membranes at about 17°. The transition temperature was decreased to about 12° by addition of 1 0 mM octanoic acid. Octanoic acidalso shifted the break points of the van't Hoffplot of antagonist and low affinity agonist binding from 18° to 12°. High affinity agonist binding, however, remained unchanged. It is concluded that agonist-specific thennodynamic characteristics of ligand binding to a2-receptors of human platelets can only be investigated by regarding differences between high and low affinity agonist binding. These differences include an entropy increase upon Iigand binding, which is in part due to enhanced liberation of sodium ions, and a loss of sensitivity to fluidity changes in the outer layer of the plasma membrane. KW - Molekularpharmakologie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-86023 ER - TY - JOUR A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Schwabe, Ulrich T1 - Agonist photoaffinity labeling of A1 adenosine receptors: Persistent activation reveals spare receptors N2 - No abstract available. KW - Pharmazie KW - Pharmakologie Y1 - 1986 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-87966 ER - TY - CHAP A1 - Lohse, Martin J. A1 - Klotz, Karl-Norbert A1 - Schwabe, Ulrich T1 - Effects of barbiturates on A1 adenosine receptors of rat brain N2 - Barbiturates inhibit binding of radioligands to A 1(Ri) adenosine receptors of rat brain membranes. This inhibition is dose-dependent and stereospecific and occurs in the range of pharmacologically active concentrations. The displacement of radiolabelled A1antagonists by barbiturates is not modified by GTP, indicating that barbiturates might act as antagonists at this receptor. This action of barbiturates does not seem to be related to the binding of barbiturates to plasma membranes, as the latter process has different characteristics. Barbiturates also inhibit the binding of radioligands to solubilized A1receptors, and saturation and kinetic experiments suggest that this is due to a competitive antagonism. These results indicate that barbiturates interact with the recognition site of the A1adenosine receptor. KW - Barbiturat KW - Adenosinrezeptor KW - Ratte Y1 - 1985 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70100 ER -