TY - JOUR A1 - Wevrett, Jill A1 - Fenwick, Andrew A1 - Scuffham, James A1 - Johansson, Lena A1 - Gear, Jonathan A1 - Schlögl, Susanne A1 - Segbers, Marcel A1 - Sjögreen-Gleisner, Katarina A1 - Solný, Pavel A1 - Lassmann, Michael A1 - Tipping, Jill A1 - Nisbet, Andrew T1 - Inter-comparison of quantitative imaging of lutetium-177 (\(^{177}\)Lu) in European hospitals JF - EJNMMI Physics N2 - Background This inter-comparison exercise was performed to demonstrate the variability of quantitative SPECT/CT imaging for lutetium-177 (\(^{177}\)Lu) in current clinical practice. Our aim was to assess the feasibility of using international inter-comparison exercises as a means to ensure consistency between clinical sites whilst enabling the sites to use their own choice of quantitative imaging protocols, specific to their systems. Dual-compartment concentric spherical sources of accurately known activity concentrations were prepared and sent to seven European clinical sites. The site staff were not aware of the true volumes or activity within the sources—they performed SPECT/CT imaging of the source, positioned within a water-filled phantom, using their own choice of parameters and reported their estimate of the activities within the source. Results The volumes reported by the participants for the inner section of the source were all within 29% of the true value and within 60% of the true value for the outer section. The activities reported by the participants for the inner section of the source were all within 20% of the true value, whilst those reported for the outer section were up to 83% different to the true value. Conclusions A variety of calibration and segmentation methods were used by the participants for this exercise which demonstrated the variability of quantitative imaging across clinical sites. This paper presents a method to assess consistency between sites using different calibration and segmentation methods. KW - Lutetium KW - Lu-177 KW - SPECT/CT KW - quantitative imaging KW - PRRT KW - molecular radiotherapy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233658 VL - 5 ER - TY - JOUR A1 - Werner, Rudolf A. A1 - Marcus, Charles A1 - Sheikhbahaei, Sara A1 - Solnes, Lilja B. A1 - Leal, Jeffrey P. A1 - Du, Yong A1 - Rowe, Steven P. A1 - Higuchi, Takahiro A1 - Buck, Andreas K. A1 - Lapa, Constantin A1 - Javadi, Mehrbod S. T1 - Visual and Semiquantitative Accuracy in Clinical Baseline 123I-Ioflupane SPECT/CT Imaging JF - Clinical Nuclear Medicine N2 - PURPOSE: We aimed to (a) elucidate the concordance of visual assessment of an initial I-ioflupane scan by a human interpreter with comparison to results using a fully automatic semiquantitative method and (b) to assess the accuracy compared to follow-up (f/u) diagnosis established by movement disorder specialists. METHODS: An initial I-ioflupane scan was performed in 382 patients with clinically uncertain Parkinsonian syndrome. An experienced reader performed a visual evaluation of all scans independently. The findings of the visual read were compared with semiquantitative evaluation. In addition, available f/u clinical diagnosis (serving as a reference standard) was compared with results of the human read and the software. RESULTS: When comparing the semiquantitative method with the visual assessment, discordance could be found in 25 (6.5%) of 382 of the cases for the experienced reader (ĸ = 0.868). The human observer indicated region of interest misalignment as the main reason for discordance. With neurology f/u serving as reference, the results of the reader revealed a slightly higher accuracy rate (87.7%, ĸ = 0.75) compared to semiquantification (86.2%, ĸ = 0.719, P < 0.001, respectively). No significant difference in the diagnostic performance of the visual read versus software-based assessment was found. CONCLUSIONS: In comparison with a fully automatic semiquantitative method in I-ioflupane interpretation, human assessment obtained an almost perfect agreement rate. However, compared to clinical established diagnosis serving as a reference, visual read seemed to be slightly more accurate as a solely software-based quantitative assessment. KW - Single-Photon-Emissions-Computertomographie KW - SPECT KW - Parkinson’s disease KW - Parkinsonism KW - DaTscan KW - 123I-Ioflupane KW - SPECT KW - SPECT/CT Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168181 SN - 1536-0229 VL - 44 IS - 1 ER -