TY - JOUR A1 - Wiegering, Armin A1 - Pfann, Christina A1 - Uthe, Friedrich Wilhelm A1 - Otto, Christoph A1 - Rycak, Lukas A1 - Mäder, Uwe A1 - Gasser, Martin A1 - Waaga-Gasser, Anna-Maria A1 - Eilers, Martin A1 - Germer, Christoph-Thomas T1 - CIP2A Influences Survival in Colon Cancer and Is Critical for Maintaining Myc Expression JF - PLoS ONE N2 - The cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogenic factor that stabilises the c-Myc protein. CIP2A is overexpressed in several tumours, and expression levels are an independent marker for long-term outcome. To determine whether CIP2A expression is elevated in colon cancer and whether it might serve as a prognostic marker for survival, we analysed CIP2A mRNA expression by real-time PCR in 104 colon cancer samples. CIP2A mRNA was overexpressed in colon cancer samples and CIP2A expression levels correlated significantly with tumour stage. We found that CIP2A serves as an independent prognostic marker for disease-free and overall survival. Further, we investigated CIP2A-dependent effects on levels of c-Myc, Akt and on cell proliferation in three colon cancer cell lines by silencing CIP2A using small interfering (si) and short hairpin (sh) RNAs. Depletion of CIP2A substantially inhibited growth of colon cell lines and reduced c-Myc levels without affecting expression or function of the upstream regulatory kinase, Akt. Expression of CIP2A was found to be dependent on MAPK activity, linking elevated c-Myc expression to deregulated signal transduction in colon cancer. KW - caco-2 cells KW - carcinomas KW - colon KW - colorectal cancer KW - MAPK signaling cascades KW - metastasis KW - protein expression KW - small interferring RNA Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97252 ER - TY - JOUR A1 - Djuzenova, Cholpon S. A1 - Zimmermann, Marcus A1 - Katzer, Astrid A1 - Fiedler, Vanessa A1 - Distel, Luitpold V. A1 - Gasser, Martin A1 - Waaga-Gasser, Anna-Maria A1 - Flentje, Michael A1 - Polat, Bülent T1 - A prospective study on histone γ-H2AX and 53BP1 foci expression in rectal carcinoma patients: correlation with radiation therapy-induced outcome JF - BMC Cancer N2 - Background The prognostic value of histone γ-H2AX and 53BP1 proteins to predict the radiotherapy (RT) outcome of patients with rectal carcinoma (RC) was evaluated in a prospective study. High expression of the constitutive histone γ-H2AX is indicative of defective DNA repair pathway and/or genomic instability, whereas 53BP1 (p53-binding protein 1) is a conserved checkpoint protein with properties of a DNA double-strand breaks sensor. Methods Using fluorescence microscopy, we assessed spontaneous and radiation-induced foci of γ-H2AX and 53BP1 in peripheral blood mononuclear cells derived from unselected RC patients (n = 53) undergoing neoadjuvant chemo- and RT. Cells from apparently healthy donors (n = 12) served as references. Results The γ-H2AX assay of in vitro irradiated lymphocytes revealed significantly higher degree of DNA damage in the group of unselected RC patients with respect to the background, initial (0.5 Gy, 30 min) and residual (0.5 Gy and 2 Gy, 24 h post-radiation) damage compared to the control group. Likewise, the numbers of 53BP1 foci analyzed in the samples from 46 RC patients were significantly higher than in controls except for the background DNA damage. However, both markers were not able to predict tumor stage, gastrointestinal toxicity or tumor regression after curative RT. Interestingly, the mean baseline and induced DNA damage was found to be lower in the group of RC patients with tumor stage IV (n = 7) as compared with the stage III (n = 35). The difference, however, did not reach statistical significance, apparently, because of the limited number of patients. Conclusions The study shows higher expression of γ-H2AX and 53BP1 foci in rectal cancer patients compared with healthy individuals. Yet the data in vitro were not predictive in regard to the radiotherapy outcome. KW - radiosensitivity KW - peripheral blood lymphocytes KW - DNA repair KW - DNA damage Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125303 VL - 15 IS - 856 ER -