TY - JOUR A1 - Schrewe, L. A1 - Lill, C. M. A1 - Liu, T. A1 - Salmen, A. A1 - Gerdes, L. A. A1 - Guillot-Noel, L. A1 - Akkad, D. A. A1 - Blaschke, P. A1 - Graetz, C. A1 - Hoffjan, S. A1 - Kroner, A. A1 - Demir, S. A1 - Böhme, A. A1 - Rieckmann, P. A1 - El Ali, A. A1 - Hagemann, N. A1 - Hermann, D. M. A1 - Cournu-Rebeix, I. A1 - Zipp, F. A1 - Kümpfel, T. A1 - Buttmann, M. A1 - Zettl, U. K. A1 - Fontaine, B. A1 - Bertram, L. A1 - Gold, R. A1 - Chan, A. T1 - Investigation of sex-specific effects of apolipoprotein E on severity of EAE and MS JF - Journal of Neuroinflammation N2 - Background: Despite pleiotropic immunomodulatory effects of apolipoprotein E (apoE) in vitro, its effects on the clinical course of experimental autoimmune encephalomyelitis (EAE) and multiple sclerosis (MS) are still controversial. As sex hormones modify immunomodulatory apoE functions, they may explain contentious findings. This study aimed to investigate sex-specific effects of apoE on disease course of EAE and MS. Methods: MOG\(_{35-55}\) induced EAE in female and male apoE-deficient mice was assessed clinically and histopathologically. apoE expression was investigated by qPCR. The association of the MS severity score (MSSS) and APOE rs429358 and rs7412 was assessed across 3237 MS patients using linear regression analyses. Results: EAE disease course was slightly attenuated in male apoE-deficient (apoE\(^{-/-}\)) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 2 [IQR 0.0-4.5]; wildtype = 4 [IQR 1.0-5.0]; n = 10 each group, p = 0.0002). In contrast, EAE was more severe in female apoE\(^{-/-}\) mice compared to wildtype mice (cumulative median score: apoE\(^{-/-}\) = 3 [IQR 2.0-4.5]; wildtype = 3 [IQR 0.0-4.0]; n = 10, p = 0.003). In wildtype animals, apoE expression during the chronic EAE phase was increased in both females and males (in comparison to naive animals; p < 0.001). However, in MS, we did not observe a significant association between MSSS and rs429358 or rs7412, neither in the overall analyses nor upon stratification for sex. Conclusions: apoE exerts moderate sex-specific effects on EAE severity. However, the results in the apoE knock-out model are not comparable to effects of polymorphic variants in the human APOE gene, thus pinpointing the challenge of translating findings from the EAE model to the human disease. KW - immune KW - apoE KW - gender KW - inflammation KW - association studies in genetics KW - apoe KW - CNS disease KW - system KW - multiple sclerosis KW - MSSS KW - experimental autoimmune encephalomyelitis KW - disease severity KW - cognitive function KW - Alzheimer disease Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136252 VL - 12 IS - 234 ER - TY - JOUR A1 - Appelt‐Menzel, Antje A1 - Oerter, Sabrina A1 - Mathew, Sanjana A1 - Haferkamp, Undine A1 - Hartmann, Carla A1 - Jung, Matthias A1 - Neuhaus, Winfried A1 - Pless, Ole T1 - Human iPSC‐Derived Blood‐Brain Barrier Models: Valuable Tools for Preclinical Drug Discovery and Development? JF - Current Protocols in Stem Cell Biology N2 - Translating basic biological knowledge into applications remains a key issue for effectively tackling neurodegenerative, neuroinflammatory, or neuroendocrine disorders. Efficient delivery of therapeutics across the neuroprotective blood‐brain barrier (BBB) still poses a demanding challenge for drug development targeting central nervous system diseases. Validated in vitro models of the BBB could facilitate effective testing of drug candidates targeting the brain early in the drug discovery process during lead generation. We here review the potential of mono‐ or (isogenic) co‐culture BBB models based on brain capillary endothelial cells (BCECs) derived from human‐induced pluripotent stem cells (hiPSCs), and compare them to several available BBB in vitro models from primary human or non‐human cells and to rodent in vivo models, as well as to classical and widely used barrier models [Caco‐2, parallel artificial membrane permeability assay (PAMPA)]. In particular, we are discussing the features and predictivity of these models and how hiPSC‐derived BBB models could impact future discovery and development of novel CNS‐targeting therapeutics. KW - blood‐brain barrier (BBB) KW - CNS disease KW - drug permeability screening KW - human‐induced pluripotent stem cells (hiPSC) KW - preclinical drug discovery Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-218509 VL - 55 IS - 1 ER -