TY - JOUR A1 - Rudel, Thomas A1 - Mehlitz, Adrian T1 - Modulation of host signaling and cellular responses by Chlamydia JF - Cell Communication and Signaling N2 - Modulation of host cell signaling and cellular functions is key to intracellular survival of pathogenic bacteria. Intracellular growth has several advantages e.g. escape from the humoral immune response and access to a stable nutrient rich environment. Growth in such a preferred niche comes at the price of an ongoing competition between the bacteria and the host as well as other microbes that compete for the very same host resources. This requires specialization and constant evolution of dedicated systems for adhesion, invasion and accommodation. Interestingly, obligate intracellular bacteria of the order Chlamydiales have evolved an impressive degree of control over several important host cell functions. In this review we summarize how Chlamydia controls its host cell with a special focus on signal transduction and cellular modulation. KW - Chlamydia KW - Invasion KW - Inclusion KW - Type III secretion KW - Tarp KW - Inc KW - Signaling KW - Trafficking Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97225 UR - http://www.biosignaling.com/content/11/1/90 ER - TY - JOUR A1 - Herweg, Jo-Ana A1 - Hansmeier, Nicole A1 - Otto, Andreas A1 - Geffken, Anna C. A1 - Subbarayal, Prema A1 - Prusty, Bhupesh K. A1 - Becher, Dörte A1 - Hensel, Michael A1 - Schaible, Ulrich E. A1 - Rudel, Thomas A1 - Hilbi, Hubert T1 - Purification and proteomics of pathogen-modified vacuoles and membranes JF - Frontiers in Cellular and Infection Microbiology N2 - Certain pathogenic bacteria adopt an intracellular lifestyle and proliferate in eukaryotic host cells. The intracellular niche protects the bacteria from cellular and humoral components of the mammalian immune system, and at the same time, allows the bacteria to gain access to otherwise restricted nutrient sources. Yet, intracellular protection and access to nutrients comes with a price, i.e., the bacteria need to overcome cell-autonomous defense mechanisms, such as the bactericidal endocytic pathway. While a few bacteria rupture the early phagosome and escape into the host cytoplasm, most intracellular pathogens form a distinct, degradation-resistant and replication-permissive membranous compartment. Intracellular bacteria that form unique pathogen vacuoles include Legionella, Mycobacterium, Chlamydia, Simkania, and Salmonella species. In order to understand the formation of these pathogen niches on a global scale and in a comprehensive and quantitative manner, an inventory of compartment-associated host factors is required. To this end, the intact pathogen compartments need to be isolated, purified and biochemically characterized. Here, we review recent progress on the isolation and purification of pathogen-modified vacuoles and membranes, as well as their proteomic characterization by mass spectrometry and different validation approaches. These studies provide the basis for further investigations on the specific mechanisms of pathogen-driven compartment formation. KW - spectrometry-based proteomics KW - Mycobacterium tuberculosis KW - Chlamydia KW - Salmonella KW - bacterium Legionella pneumophila KW - endocytic multivesicular bodies KW - phagosome maturation arrest KW - III secretion system KW - endoplasmic reticulum KW - Chlamydia trachomatis KW - Simkania negevensis KW - intracellular bacteria KW - host pathogen interactions KW - immuno-magnetic purification KW - Legionella KW - Mycobacterium KW - Simkania KW - pathogen vacuole Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151823 VL - 5 IS - 48 ER -