TY - JOUR A1 - Traub, Jan A1 - Otto, Markus A1 - Sell, Roxane A1 - Homola, György A. A1 - Steinacker, Petra A1 - Oeckl, Patrick A1 - Morbach, Caroline A1 - Frantz, Stefan A1 - Pham, Mirko A1 - Störk, Stefan A1 - Stoll, Guido A1 - Frey, Anna T1 - Serum glial fibrillary acidic protein indicates memory impairment in patients with chronic heart failure JF - ESC Heart Failure N2 - Aims Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. Methods and results Using bead-based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters-HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty-six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = −4.7; P < 0.001), alanine aminotransferase (T = −2.1; P = 0.036), and the left atrial end-systolic volume index (T = 3.4; P = 0.004). NT-proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = −3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). Conclusions Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF. KW - Glial fibrillary acidic protein KW - GFAP KW - Chronic heart failure KW - Cognitive decline KW - Memory dysfunction KW - Brain atrophy Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312736 VL - 9 IS - 4 ER - TY - JOUR A1 - Traub, Jan A1 - Grondey, Katja A1 - Gassenmaier, Tobias A1 - Schmitt, Dominik A1 - Fette, Georg A1 - Frantz, Stefan A1 - Boivin-Jahns, Valérie A1 - Jahns, Roland A1 - Störk, Stefan A1 - Stoll, Guido A1 - Reiter, Theresa A1 - Hofmann, Ulrich A1 - Weber, Martin S. A1 - Frey, Anna T1 - Sustained increase in serum glial fibrillary acidic protein after first ST-elevation myocardial infarction JF - International Journal of Molecular Sciences N2 - Acute ischemic cardiac injury predisposes one to cognitive impairment, dementia, and depression. Pathophysiologically, recent positron emission tomography data suggest astroglial activation after experimental myocardial infarction (MI). We analyzed peripheral surrogate markers of glial (and neuronal) damage serially within 12 months after the first ST-elevation MI (STEMI). Serum levels of glial fibrillary acidic protein (GFAP) and neurofilament light chain (NfL) were quantified using ultra-sensitive molecular immunoassays. Sufficient biomaterial was available from 45 STEMI patients (aged 28 to 78 years, median 56 years, 11% female). The median (quartiles) of GFAP was 63.8 (47.0, 89.9) pg/mL and of NfL 10.6 (7.2, 14.8) pg/mL at study entry 0–4 days after STEMI. GFAP after STEMI increased in the first 3 months, with a median change of +7.8 (0.4, 19.4) pg/mL (p = 0.007). It remained elevated without further relevant increases after 6 months (+11.7 (0.6, 23.5) pg/mL; p = 0.015), and 12 months (+10.3 (1.5, 22.7) pg/mL; p = 0.010) compared to the baseline. Larger relative infarction size was associated with a higher increase in GFAP (ρ = 0.41; p = 0.009). In contrast, NfL remained unaltered in the course of one year. Our findings support the idea of central nervous system involvement after MI, with GFAP as a potential peripheral biomarker of chronic glial damage as one pathophysiologic pathway. KW - myocardial infarction KW - STEMI KW - glial fibrillary acidic protein KW - GFAP KW - neurofilament light chain KW - NfL KW - glial damage KW - cardiac magnetic resonance imaging KW - MRI KW - infarction size Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-288261 SN - 1422-0067 VL - 23 IS - 18 ER - TY - JOUR A1 - Huss, André A1 - Abdelhak, Ahmed A1 - Mayer, Benjamin A1 - Tumani, Hayrettin A1 - Müller, Hans-Peter A1 - Althaus, Katharina A1 - Kassubek, Jan A1 - Otto, Markus A1 - Ludolph, Albert C. A1 - Yilmazer-Hanke, Deniz A1 - Neugebauer, Hermann T1 - Association of serum GFAP with functional and neurocognitive outcome in sporadic small vessel disease JF - Biomedicines N2 - Cerebrospinal fluid (CSF) and serum biomarkers are critical for clinical decision making in neurological diseases. In cerebral small vessel disease (CSVD), white matter hyperintensities (WMH) are an important neuroimaging biomarker, but more blood-based biomarkers capturing different aspects of CSVD pathology are needed. In 42 sporadic CSVD patients, we prospectively analysed WMH on magnetic resonance imaging (MRI) and the biomarkers neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), chitinase3-like protein 1 (CHI3L1), Tau and Aβ1-42 in CSF and NfL and GFAP in serum. GFAP and CHI3L1 expression was studied in post-mortem brain tissue in additional cases. CSVD cases with higher serum NfL and GFAP levels had a higher modified Rankin Scale (mRS) and NIHSS score and lower CSF Aβ1-42 levels, whereas the CSF NfL and CHI3L1 levels were positively correlated with the WMH load. Moreover, the serum GFAP levels significantly correlated with the neurocognitive functions. Pathological analyses in CSVD revealed a high density of GFAP-immunoreactive fibrillary astrocytic processes in the periventricular white matter and clusters of CHI3L1-immunoreactive astrocytes in the basal ganglia and thalamus. Thus, besides NfL, serum GFAP is a highly promising fluid biomarker of sporadic CSVD, because it does not only correlate with the clinical severity but also correlates with the cognitive function in patients. KW - chitinase-3-like protein 1 KW - GFAP KW - neurofilaments KW - white matter hyperintensities KW - biomarker KW - CSVD Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-285973 SN - 2227-9059 VL - 10 IS - 8 ER - TY - JOUR A1 - Gschmack, Eva A1 - Monoranu, Camelia-Maria A1 - Marouf, Hecham A1 - Meyer, Sarah A1 - Lessel, Lena A1 - Idris, Raja A1 - Berg, Daniela A1 - Maetzler, Walter A1 - Steigerwald, Frank A1 - Volkmann, Jens A1 - Gerlach, Manfred A1 - Riederer, Peter A1 - Koutsilieri, Eleni A1 - Scheller, Carsten T1 - Plasma autoantibodies to glial fibrillary acidic protein (GFAP) react with brain areas according to Braak staging of Parkinson’s disease JF - Journal of Neural Transmission N2 - Idiopathic Parkinson’s disease (PD) is characterized by a progredient degeneration of the brain, starting at deep subcortical areas such as the dorsal motor nucleus of the glossopharyngeal and vagal nerves (DM) (stage 1), followed by the coeruleus–subcoeruleus complex; (stage 2), the substantia nigra (SN) (stage 3), the anteromedial temporal mesocortex (MC) (stage 4), high-order sensory association areas and prefrontal fields (HC) (stage 5) and finally first-order sensory association areas, premotor areas, as well as primary sensory and motor field (FC) (stage 6). Autoimmunity might play a role in PD pathogenesis. Here we analyzed whether anti-brain autoantibodies differentially recognize different human brain areas and identified autoantigens that correlate with the above-described dissemination of PD pathology in the brain. Brain tissue was obtained from deceased individuals with no history of neurological or psychiatric disease and no neuropathological abnormalities. Tissue homogenates from different brain regions (DM, SN, MC, HC, FC) were subjected to SDS-PAGE and Western blot. Blots were incubated with plasma samples from 30 PD patients and 30 control subjects and stained with anti-IgG antibodies to detect anti-brain autoantibodies. Signals were quantified. Prominent autoantigens were identified by 2D-gel-coupled mass spectrometry sequencing. Anti-brain autoantibodies are frequent and occur both in healthy controls and individuals with PD. Glial fibrillary acidic protein (GFAP) was identified as a prominent autoantigen recognized in all plasma samples. GFAP immunoreactivity was highest in DM areas and lowest in FC areas with no significant differences in anti-GFAP autoantibody titers between healthy controls and individuals with PD. The anti-GFAP autoimmunoreactivity of different brain areas correlates with the dissemination of histopathological neurodegeneration in PD. We hypothesize that GFAP autoantibodies are physiological but might be involved as a cofactor in PD pathogenesis secondary to a leakage of the blood–brain barrier. KW - Parkinson KW - GFAP KW - autoantibodies KW - Braak Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325161 VL - 129 IS - 5-6 ER -