TY - JOUR A1 - Schmitt, Dominik R. A1 - Kuper, Jochen A1 - Elias, Agnes A1 - Kisker, Caroline T1 - The Structure of the TFIIH p34 Subunit Reveals a Von Willebrand Factor A Like Fold JF - PLoS ONE N2 - RNA polymerase II dependent transcription and nucleotide excision repair are mediated by a multifaceted interplay of subunits within the general transcription factor II H (TFIIH). A better understanding of the molecular structure of TFIIH is the key to unravel the mechanism of action of this versatile protein complex within these vital cellular processes. The importance of this complex becomes further evident in the context of severe diseases like xeroderma pigmentosum, Cockayne's syndrome and trichothiodystrophy, that arise from single point mutations in TFIIH subunits. Here we describe the structure of the p34 subunit of the TFIIH complex from the eukaryotic thermophilic fungus Chaetomium thermophilum. The structure revealed that p34 contains a von Willebrand Factor A (vWA) like domain, a fold which is generally known to be involved in protein-protein interactions. Within TFIIH p34 strongly interacts with p44, a positive regulator of the helicase XPD. Putative protein-protein interfaces are analyzed and possible binding sites for the p34-p44 interaction suggested. KW - sequence motif analysis KW - iodides KW - protein-protein interactions KW - protein domains KW - molecular structure KW - electron density KW - protein structure KW - crystal structure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119471 SN - 1932-6203 VL - 9 IS - 7 ER - TY - JOUR A1 - Bangalore, Disha M. A1 - Heil, Hannah S. A1 - Mehringer, Christian F. A1 - Hirsch, Lisa A1 - Hemmen, Katharina A1 - Heinze, Katrin G. A1 - Tessmer, Ingrid T1 - Automated AFM analysis of DNA bending reveals initial lesion sensing strategies of DNA glycosylases JF - Scientific Reports N2 - Base excision repair is the dominant DNA repair pathway of chemical modifications such as deamination, oxidation, or alkylation of DNA bases, which endanger genome integrity due to their high mutagenic potential. Detection and excision of these base lesions is achieved by DNA glycosylases. To investigate the remarkably high efficiency in target site search and recognition by these enzymes, we applied single molecule atomic force microscopy (AFM) imaging to a range of glycosylases with structurally different target lesions. Using a novel, automated, unbiased, high-throughput analysis approach, we were able to resolve subtly different conformational states of these glycosylases during DNA lesion search. Our results lend support to a model of enhanced lesion search efficiency through initial lesion detection based on altered mechanical properties at lesions. Furthermore, its enhanced sensitivity and easy applicability also to other systems recommend our novel analysis tool for investigations of diverse, fundamental biological interactions. KW - atomic-force microscopy KW - base pairs KW - molecular structure KW - crystal structure KW - structural basis KW - repair KW - recognition KW - 8-oxoguanine KW - thymine KW - mismatches Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231338 VL - 10 ER -