TY - JOUR A1 - Kohl, S. A1 - Gruendler, T. O. J. A1 - Huys, D. A1 - Sildatke, E. A1 - Dembek, T. A. A1 - Hellmich, M. A1 - Vorderwulbecke, M. A1 - Timmermann, L. A1 - Ahmari, S. E. A1 - Klosterkoetter, J. A1 - Jessen, F. A1 - Sturm, V. A1 - Visser-Vandewalle, V. A1 - Kuhn, J. T1 - Effects of deep brain stimulation on prepulse inhibition in obsessive-compulsive disorder JF - Translational Psychiatry N2 - Owing to a high response rate, deep brain stimulation (DBS) of the ventral striatal area has been approved for treatment-refractory obsessive-compulsive disorder (tr-OCD). Many basic issues regarding DBS for tr-OCD are still not understood, in particular, the mechanisms of action and the origin of side effects. We measured prepulse inhibition (PPI) in treatment-refractory OCD patients undergoing DBS of the nucleus accumbens (NAcc) and matched controls. As PPI has been used in animal DBS studies, it is highly suitable for translational research. Eight patients receiving DBS, eight patients with pharmacological treatment and eight age-matched healthy controls participated in our study. PPI was measured twice in the DBS group: one session with the stimulator switched on and one session with the stimulator switched off. OCD patients in the pharmacologic group took part in a single session. Controls were tested twice, to ensure stability of data. Statistical analysis revealed significant differences between controls and (1) patients with pharmacological treatment and (2) OCD DBS patients when the stimulation was switched off. Switching the stimulator on led to an increase in PPI at a stimulus-onset asynchrony of 200 ms. There was no significant difference in PPI between OCD patients being stimulated and the control group. This study shows that NAcc-DBS leads to an increase in PPI in tr-OCD patients towards a level seen in healthy controls. Assuming that PPI impairments partially reflect the neurobiological substrates of OCD, our results show that DBS of the NAcc may improve sensorimotor gating via correction of dysfunctional neural substrates. Bearing in mind that PPI is based on a complex and multilayered network, our data confirm that DBS most likely takes effect via network modulation. KW - nucleus KW - serotonin KW - schizophrenia KW - dopamine KW - double-blind KW - psychiatric disorders KW - in vivo KW - acoustic startle KW - reflex KW - modulation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138300 VL - 5 IS - e675 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Araragi, Naozumi A1 - Merker, Sören A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Mayer, Ute A1 - Proft, Florian A1 - Hamon, Michel A1 - Schmitt, Angelika G. A1 - Corradetti, Renato A1 - Lanfumey, Laurence A1 - Lesch, Klaus-Peter T1 - Impacts of Brain Serotonin Deficiency following Tph2 Inactivation on Development and Raphe Neuron Serotonergic Specification JF - PLoS One N2 - Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis. KW - lacking KW - knock-out mice KW - energy expenditure KW - locomotor activity KW - 5-HT transporter KW - anxiety like KW - receptors KW - behavior KW - tryptophan KW - nucleus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133728 VL - 7 IS - 8 ER - TY - JOUR A1 - Butt, Elke A1 - Howard, Cory M. A1 - Raman, Dayanidhi T1 - LASP1 in cellular signaling and gene expression: more than just a cytoskeletal regulator JF - Cells N2 - LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included. KW - LASP1 KW - AKT KW - CXCR4 KW - structure KW - cytoskeleton KW - phosphorylation KW - transcriptional regulation KW - epigenetics KW - nucleus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297447 SN - 2073-4409 VL - 11 IS - 23 ER -