TY - JOUR A1 - Liu, Han A1 - Chen, Chunhai A1 - Gao, Zexia A1 - Min, Jiumeng A1 - Gu, Yongming A1 - Jian, Jianbo A1 - Jiang, Xiewu A1 - Cai, Huimin A1 - Ebersberger, Ingo A1 - Xu, Meng A1 - Zhang, Xinhui A1 - Chen, Jianwei A1 - Luo, Wei A1 - Chen, Boxiang A1 - Chen, Junhui A1 - Liu, Hong A1 - Li, Jiang A1 - Lai, Ruifang A1 - Bai, Mingzhou A1 - Wei, Jin A1 - Yi, Shaokui A1 - Wang, Huanling A1 - Cao, Xiaojuan A1 - Zhou, Xiaoyun A1 - Zhao, Yuhua A1 - Wei, Kaijian A1 - Yang, Ruibin A1 - Liu, Bingnan A1 - Zhao, Shancen A1 - Fang, Xiaodong A1 - Schartl, Manfred A1 - Qian, Xueqiao A1 - Wang, Weimin T1 - The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet JF - GigaScience N2 - The blunt snout bream Megalobrama amblycephala is the economically most important cyprinid fish species. As an herbivore, it can be grown by eco-friendly and resource-conserving aquaculture. However, the large number of intermuscular bones in the trunk musculature is adverse to fish meat processing and consumption. As a first towards optimizing this aquatic livestock, we present a 1.116-Gb draft genome of M. amblycephala, with 779.54 Mb anchored on 24 linkage groups. Integrating spatiotemporal transcriptome analyses, we show that intermuscular bone is formed in the more basal teleosts by intramembranous ossification and may be involved in muscle contractibility and coordinating cellular events. Comparative analysis revealed that olfactory receptor genes, especially of the beta type, underwent an extensive expansion in herbivorous cyprinids, whereas the gene for the umami receptor T1R1 was specifically lost in M. amblycephala. The composition of gut microflora, which contributes to the herbivorous adaptation of M. amblycephala, was found to be similar to that of other herbivores. As a valuable resource for the improvement of M. amblycephala livestock, the draft genome sequence offers new insights into the development of intermuscular bone and herbivorous adaptation. KW - Megalobrama amblycephala KW - whole genome KW - herbivorous diet KW - intermuscular bone KW - transcriptome KW - gut microflora Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170844 VL - 6 IS - 7 ER - TY - JOUR A1 - Dedukh, Dmitrij A1 - Da Cruz, Irene A1 - Kneitz, Susanne A1 - Marta, Anatolie A1 - Ormanns, Jenny A1 - Tichopád, Tomáš A1 - Lu, Yuan A1 - Alsheimer, Manfred A1 - Janko, Karel A1 - Schartl, Manfred T1 - Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa JF - Chromosome Research N2 - Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes. KW - meiosis KW - parthenogenesis KW - synaptonemal complex KW - recombination KW - crossing-over KW - achiasmatic KW - transcriptome KW - oogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325128 VL - 30 IS - 4 ER - TY - JOUR A1 - Biscotti, Maria Assunta A1 - Gerdol, Marco A1 - Canapa, Adriana A1 - Forconi, Mariko A1 - Olmo, Ettore A1 - Pallavicini, Alberto A1 - Barucca, Marco A1 - Schartl, Manfred T1 - The Lungfish Transcriptome: A Glimpse into Molecular Evolution Events at the Transition from Water to Land JF - Scientific Reports N2 - Lungfish and coelacanths are the only living sarcopterygian fish. The phylogenetic relationship of lungfish to the last common ancestor of tetrapods and their close morphological similarity to their fossil ancestors make this species uniquely interesting. However their genome size, the largest among vertebrates, is hampering the generation of a whole genome sequence. To provide a partial solution to the problem, a high-coverage lungfish reference transcriptome was generated and assembled. The present findings indicate that lungfish, not coelacanths, are the closest relatives to land-adapted vertebrates. Whereas protein-coding genes evolve at a very slow rate, possibly reflecting a “living fossil” status, transposable elements appear to be active and show high diversity, suggesting a role for them in the remarkable expansion of the lungfish genome. Analyses of single genes and gene families documented changes connected to the water to land transition and demonstrated the value of the lungfish reference transcriptome for comparative studies of vertebrate evolution. KW - lungfish KW - transcriptome KW - genome KW - sarcopterygian fish Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167753 VL - 6 IS - 21571 ER -