TY - JOUR A1 - Tabatabai, Julia A1 - Prifert, Christiane A1 - Pfeil, Johannes A1 - Grulich-Henn, Juergen A1 - Schnitzler, Paul T1 - Novel Respiratory Syncytial Virus (RSV) Genotype ON1 Predominates in Germany during Winter Season 2012-13 JF - PLOS ONE N2 - Respiratory syncytial virus (RSV) is the leading cause of hospitalization especially in young children with respiratory tract infections (RTI). Patterns of circulating RSV genotypes can provide a better understanding of the molecular epidemiology of RSV infection. We retrospectively analyzed the genetic diversity of RSV infection in hospitalized children with acute RTI admitted to University Hospital Heidelberg/Germany between October 2012 and April 2013. Nasopharyngeal aspirates (NPA) were routinely obtained in 240 children younger than 2 years of age who presented with clinical symptoms of upper or lower RTI. We analyzed NPAs via PCR and sequence analysis of the second variable region of the RSV G gene coding for the attachment glycoprotein. We obtained medical records reviewing routine clinical data. RSV was detected in 134/240 children. In RSV-positive patients the most common diagnosis was bronchitis/bronchiolitis (75.4%). The mean duration of hospitalization was longer in RSV-positive compared to RSV-negative patients (3.5 vs. 5.1 days; p < 0.01). RSV-A was detected in 82.1%, RSV-B in 17.9% of all samples. Phylogenetic analysis of 112 isolates revealed that the majority of RSV-A strains (65%) belonged to the novel ON1 genotype containing a 72-nucleotide duplication. However, genotype ON1 was not associated with a more severe course of illness when taking basic clinical/laboratory parameters into account. Molecular characterization of RSV confirms the co-circulation of multiple genotypes of subtype RSV-A and RSV-B. The duplication in the G gene of genotype ON1 might have an effect on the rapid spread of this emerging RSV strain. KW - group-A KW - group B genotype KW - subgroup-B KW - South Africa KW - genetic variability KW - 60-nucleotide duplication KW - molecular characterization KW - attachment glycoprotein KW - circulation patterns KW - phylogenetic analysis Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115229 VL - 9 IS - 10 ER - TY - JOUR A1 - Koziol, Uriel A1 - Radio, Santiago A1 - Smircich, Pablo A1 - Zarowiecki, Magdalena A1 - Fernández, Cecilia A1 - Brehm, Klaus T1 - A novel terminal-repeat retrotransposon in miniature (TRIM) is massively expressed in Echinococcus multilocularis stem cells JF - Genome Biology and Evolution N2 - Taeniid cestodes (including the human parasites Echinococcus spp. and Taenia solium) have very few mobile genetic elements (MGEs) in their genome, despite lacking a canonical PIWI pathway. The MGEs of these parasites are virtually unexplored, and nothing is known about their expression and silencing. In this work, we report the discovery of a novel family of small nonautonomous long terminal repeat retrotransposons (also known as terminal-repeat retrotransposons in miniature, TRIMs) which we have named ta-TRIM (taeniid TRIM). ta-TRIMs are only the second family of TRIM elements discovered in animals, and are likely the result of convergent reductive evolution in different taxonomic groups. These elements originated at the base of the taeniid tree and have expanded during taeniid diversification, including after the divergence of closely related species such as Echinococcus multilocularis and Echinococcus granulosus. They are massively expressed in larval stages, from a small proportion of full-length copies and from isolated terminal repeats that show transcriptional read-through into downstream regions, generating novel noncoding RNAs and transcriptional fusions to coding genes. In E. multilocularis, ta-TRIMs are specifically expressed in the germinative cells (the somatic stem cells) during asexual reproduction of metacestode larvae. This would provide a developmental mechanism for insertion of ta-TRIMs into cells that will eventually generate the adult germ line. Future studies of active and inactive ta-TRIM elements could give the first clues on MGE silencing mechanisms in cestodes. KW - Schistosoma mansoni KW - molecular characterization KW - gene conversion KW - nonautonomous KW - neoblast KW - pluripotency KW - retrotransposition KW - long noncoding RNA KW - epidermal growth factor KW - transposable elements KW - LTR retrotransposons KW - blood fluke KW - homologous recombination KW - Cestoda Taeniidae Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-148306 VL - 7 IS - 8 ER -