TY - THES A1 - Widmaier, Louis T1 - Die Regulation des Chemokinrezeptors CXCR4 durch Chemotherapeutika in Myelomzelllinien T1 - The regulation of chemokinreceptor CXCR4 by chemotherapeutics in myeloma cell lines N2 - Untersucht wurde der Einfluss mehrerer Chemotherapeutika auf den Chemokinrezeptor CXCR4 in Myelomzelllinien auf Ebene des Promotors, der mRNA und der Rezeptorverteilung, wobei drei Substanzen (Etoposid, Bortezomib und Dexamethason) als potenzielle Suppressoren des Promotors ausgemacht werden konnten. Abhängig vom Myelom-Zelltyp und der Dosierung können so evtl. Rückschlüsse auf die beobachtete Suppression von CXCR4 bei erkrankten Patienten mit hoher CXCR4-Aktivität (hier: Malignes Myelom) durch die begleitende Chemotherapie gezogen werden, welche eine Diagnostik und Therapie bei diesen Patienten erschwert. Hintergrund: Hintergrund für diese Arbeit waren Beobachtungen in klinischen Fallstudien von Lapa et al. am Universitätsklinikum Würzburg, die sich auf CXCR4 bezogen, welches u.a. bei Patienten mit Multiplem Myelom überexprimiert wird und dadurch bereits als Target für Diagnostik und Therapie in der Klinik Anwendung findet. Dabei konnte bei PET-CT Untersuchungen in der Nuklearmedizin beobachtet werden, dass es durch die begleitende Chemotherapie der Patienten zu einer Suppression des markierten CXCR4-Signals kam, so dass es nicht mehr zur Verlaufsbeobachtung und vor allem nicht mehr zur Radiotherapie und Therapiekontrolle verwendet werden konnte. Um den Einfluss und mögliche Interaktionen der Chemotherapeutika auf CXCR4 zu untersuchen, war es Ziel dieser Arbeit, ein vergleichbares Szenario in-vitro nachzustellen und Einflüsse messbar zu machen, um so mögliche Ansätze und Verbesserungsvorschläge für die klinische Anwendung zu liefern. Methoden/Ergebnisse: Hierfür wurden im ersten Teil INA-6 (Myelomzellen) und Mesenchymale Stammzellen (MSC) kultiviert, in Ko-Kultur gebracht und nach einer bestimmten Zeit wieder getrennt, um anschließend den gegenseitigen Einfluss in Bezug auf CXCR4 zu messen. Zudem wurde der Einfluss von Dexamethason untersucht. Es zeigte sich eine enge Bindung zwischen INA-6 und MSC sowie eine hohe CXCR4-Aktivität bei INA-6, jedoch konnte keine Induktion der CXCR4-Aktivität in MSC durch INA-6-Kontakt oder Dexamethason quantifiziert werden. Die Immunzytologie erwies sich aufgrund einer schweren Anfärbbarkeit von CXCR4 – auch mit verschiedensten Antikörpern und sogar Liganden-gekoppeltem Farbstoff– als kaum auswertbar, wobei eine Darstellung von CXCR4 generell aber gelang. Der CXCR4-Promotor wurde mittels Software genauer analysiert, wobei einige relevante Bindestellen, u.a. für Glukokortikoide und NFkB gefunden wurden. Die Herstellung eines CXCR4- pGl4.14-Promotor-Konstrukts war erfolgreich, ebenso dessen Einschleusung in Myelomzellen. Auch gelang die Herstellung stabiler transfizierter INA-6, sodass mit diesen anschließend konstantere Ergebnisse erzielt werden konnten. Im größten Teil der Arbeit wurden geeignete Chemotherapeutika-Konzentrationen ermittelt und in Viabilitäts- und Apoptose-Versuchen überprüft. Die Stimulationsversuche mit diesen zeigten variable Effekte abhängig vom Zelltyp (INA-6, MM1S), jedoch konnten Bortezomib, Etoposid und Dexamethason konzentrationsabhängig als starke Suppressoren der CXCR4-Aktivität ausgemacht werden, was sich v.a. auf Ebene der Promotoraktivität – gemessen mittels Luciferase - zeigte. Interpretation: In-vitro konnten somit drei potenzielle Suppressoren der CXCR4-Aktivität ausgemacht werden: Etoposid, Bortezomib und Dexamethason. Zumindest beim INA-6-Zelltyp fiel dieser Effekt deutlich aus, wobei in der Klinik der entsprechende Zelltyp sowie die Dosierung der Medikamente berücksichtigt werden müssen. Hinzu kommen weitere Einflussfaktoren des menschlichen Körpers, die nicht berücksichtig werden konnten. Die genauen Mechanismen der Suppression könnten sich aus den Bindestellen des Promotors erklären, die von uns analysiert wurden, aber auf die in weiteren Arbeiten noch näher eingegangen werden muss. N2 - The influence of several chemotherapeutic agents on the chemokine receptor CXCR4 in myeloma cell lines at the level of the promoter, the mRNA and the receptor distribution was examined, whereby three substances (etoposide, bortezomib and dexamethasone) could be identified as potential suppressors of the promoter. Depending on the cell type and the dosage, conclusions can be drawn about the observed suppression of CXCR4 in patients with diseases with high CXCR4 activity (here: multiple myeloma) due to the accompanying chemotherapy, which impairs theranostic applications like diagnostic imaging using PET/CT and may in particular abolish the chances of radiotherapeutic intervention in these patients. Background: The background for this work were observations in clinical case studies by Lapa et al. at the University Hospital Würzburg, which referred to CXCR4, which is overexpressed in patients with multiple myeloma and is therefore already used as a target for diagnostics and therapy in the clinic. During PET-CT examinations in nuclear medicine, it could be observed that the accompanying chemotherapy of the patients led to a suppression of the marked CXCR4 signal, which is why it could no longer be used for monitoring the follow-up, but also was lost as a radiotherapeutic target. In order to investigate the influence and possible interactions of chemotherapeutic agents on CXCR4, the aim of this work was to simulate a comparable scenario in vitro and to make influences measurable in order to provide possible approaches and suggestions for improvement for clinical application. Methods/Conclusions: For this purpose, INA-6 (myeloma cells) and mesenchymal stem cells (MSC) were cultivated in the first part, brought into co-culture and separated again after a certain time in order to then measure the mutual influence with regard to CXCR4 expression. The influence of dexamethasone was also examined. There were intensive contacts between INA-6 and MSC and high CXCR4 activity in INA-6, but no induction of CXCR4 activity in MSC by INA-6 or dexamethasone could be quantified. The immunocytology turned out to be difficult due to the difficulty of staining CXCR4 - even with a wide variety of antibodies and ligand-coupled dyes - although CXCR4 was generally able to be represented. The CXCR4 promoter was analyzed in more detail using the Genomatix software, and some relevant binding sites, including response elements for glucocorticoids and NFkB, were found. The production of a CXCR4-pGl4.14 luciferase-reporter construct was successful, as was its introduction into myeloma cells. The production of stably transfected INA-6 was also successful, so that more constant results could then be achieved. In a large part of the work, suitable chemotherapeutic concentrations were determined and checked in viability and apoptosis tests. The stimulation experiments with these showed variable effects depending on the cell type (INA-6, MM1S). However, depending on the concentration, bortezomib, etoposide and dexamethasone could be identified as strong suppressors of CXCR4 activity, which was particularly evident at the level of activity of our luciferase-reporter construct. Interpretation: Overall, three potential suppressors of CXCR4 activity could be identified in-vitro: etoposide, bortezomib and dexamethasone. At least with the INA-6 cell type, this effect was clear, although the corresponding cell type and the dosage of the medication must be taken into account in the clinic. In addition, there may be other influencing factors of the human organism in vivo that could not be considered. The exact mechanisms of suppression could be explained by the binding sites of the promoter, which we analyzed, but which will have to be discussed in more detail in further work. KW - Bortezomib KW - Plasmozytom KW - Chemokin CXCL12 KW - Multiples Myelom KW - Chemotherapie KW - Promotor KW - CXCR4 KW - Stimulationsversuche Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-345682 ER - TY - THES A1 - Schubert, Andreas T1 - Protein kinases as targets for the development of novel drugs against alveolar echinococcosis T1 - Proteinkinasen als Angriffspunkte für die Entwicklung neuer Chemotherapeutika gegen die Alveoläre Echinokokkose N2 - The metacestode larval stage of the fox tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), one of the most lethal zoonosis of the northern hemisphere. The development of metacestode vesicles by asexual multiplication and the almost unrestricted infiltrative growth within the host organs is ensured from a population of undifferentiated, proliferative cells, so-called germinative cells. AE treatment options include surgery, if possible, as well as Benzimidazole-based chemotherapy (BZ). Given that the cellular targets of BZs, the -tubulins, are highly conserved between cestodes and humans, the chemotherapy is associated with considerable side-effects. Therefore, BZ can only be applied in parasitostatic doses and has to be given lifelong. Furthermore, the current anti-AE chemotherapy is ineffective in eliminating the germinative cell population of the parasite, which leads to remission of parasite growth as soon as therapy is discontinued. This work focuses on protein kinases involved in the proliferation and development of the parasite with the intention of developing novel anti-AE therapies. Polo-like kinases (Plks) are important regulators of the eukaryotic cell cycle and are involved in the regulation and formation of the mitotic spindles during the M-phase of the cell cycle. Plks have already been shown to be associated with deregulated cellular growth in human cancers and have been investigated as novel drug targets in the flatworm parasite Schistosoma mansoni. In the first part of this work, the characterisation of a novel and druggable parasite enzyme, EmPlk1, which is homologous to the polo-like kinase 1 (Plk1) of humans and S. mansoni (SmPlk1), is presented. Through in situ hybridisation, it could be demonstrated that emplk1 is specifically expressed in the Echinococcus germinative cells. Upon heterologous expression in the Xenopus oocyte system, EmPlk1 induced germinal vesicle breakdown, thus indicating that it is an active kinase. Furthermore, BI 2536, a compound originally designed to inhibit the human ortholog of EmPlk1, inhibited the EmPlk1 activity at a concentration of 25 nM. In vitro treatment of parasite vesicles with similar concentrations of BI 2536 led to the elimination of the germinative cells from Echinococcus larvae, thus preventing the growth and further development of the parasite. In in vitro cultivation systems for parasite primary cells, BI 2536 effectively inhibited the formation of new metacestode vesicles from germinative cells. Thus, BI 2536 has profound anti-parasitic activities in vitro at concentrations well within the range of plasma levels measured after the administration of safe dosages to patients (50 nM after 24 h). This implies that EmPlk1 is a promising new drug target for the development of novel anti-AE drugs that would specifically affect the parasite’s stem cell population, namely the only parasite cells capable of proliferation. In addition to the chemotherapeutic aspects of this work, the inhibitor BI 2536 could be further used to study the function of stem cells in this model organism, utilising a method of injection of parasite stem cells into metacestode vesicles, for instance, as has been developed in this work. In the second part of this work, a novel receptor tyrosine kinase, the Venus flytrap kinase receptor (EmVKR) of E. multilocularis has been characterised. Members of this class of single-pass transmembrane receptors have recently been discovered in the related trematode S. mansoni and are associated with the growth and differentiation of sporocyst germinal cells and ovocytes. The ortholog receptor in EmVKR is characterised by an unusual domain composition of an extracellular Venus flytrap module (VFT), which shows significant similarity to GABA receptors, such as the GABAB receptor (γ-amino butyric acid type B) and is linked through a single transmembrane domain to an intracellular tyrosine kinase domain with similarities to the kinase domains of human insulin receptors. Based upon the size (5112bp) of emvkr and nucleotide sequence specificities, efforts have been made to isolate the gene from cell culture samples to study the ligand for the activation of this receptor type in Xenopus oocytes. To date, this type of receptor has only been described in invertebrates, thus making it an attractive target for drug screening. In a first trial, the ATP competitive inhibitor AG 1024 was tested in our in vitro cell culture. In conclusion, the EmVKR represents a novel receptor tyrosine kinase in E. multilocularis. Further efforts have to be made to identify the activating ligand of the receptor and its cellular function, which might strengthen the case for EmVKR as a potential drug target. The successful depletion of stem cells in the metacestode vesicle by the Plk1 inhibitor BI 2536 gives rise to optimising the chemical component for EmPlk1 as a new potential drug target. Furthermore, this inhibitor opens a new cell culture technique with high potential to study the cellular behaviour and influencing factors of stem cells in vitro. N2 - Das Verbreitungsgebiet des kleinen Fuchsbandwurms erstreckt sich über die nördliche Hemisphäre und eine Infektion des Menschen verursacht eine meist tödliche verlaufende Parasitose, die alveolaren Echinococcose (AE). Durch infiltratives und asexuelles Wachstum des Larvenstadiums der AE im betroffenen Wirtsorgan kommt es zu einer tödlich verlaufenden Krankheit. Das Wachstum der Metacestoden wird dabei durch undifferenzierte proliferierende Stammzellen, den sog. „germinativen Zellen“ des Fuchsbandwurmes verursacht. Die derzeitigen Behandlungsmöglichkeiten von AE sehen neben einem chirurgischen Eingriff, der in den meisten Fällen nicht möglich ist, nur eine Chemotherapie mit Benzimidazolen (BZ) vor. Die Chemotherapie mit BZ richtet sich dabei gegen die β-Tubuline des Parasiten und ist überwiegend mit einer lebenslangen Behandlung verbunden. Obwohl sich die Behandlungsmöglichkeiten und die Prognose für Patienten seit der Verwendung von Benzimidazolen bedeutsam verbessert haben, kommt es dennoch zu starken Nebenwirkungen und die angewendete Chemotherapie wirkt nur parasitostatisch. Der Grund dafür liegt an der hohen Homologie zwischen den β-Tubulinen des Parasiten und des Menschen, welche die Zielproteine von Benzimidazolen sind. Um die Nebenwirkungen für den Patienten gering zu halten, werden die Benzimidazole nur in Konzentrationen verabreicht, die parasitostatisch wirken, was zu keiner Abtötung des Parasitengewebes führt. Darüber hinaus sind die gegenwärtigen AE-Medikamente nicht wirksam gegen die germinativen Zellen des Parasiten, was zu einem Wiederauftreten des Wachstums von Parasitengewebe führt, sobald die Chemotherapie unterbrochen wird. Die hier vorliegende Arbeit konzentriert sich auf die Entwicklung eines neuen chemotherapeutischen Ansatzes gegen AE und befasst sich mit Proteinkinasen, die einen wesentlichen Einfluss auf die Proliferation und die Differenzierung von Zellen des Parasiten haben. Proteinkinasen, die in direkten Zusammenhang mit den Zellzyklus stehen, sind beispielsweise die Polo-like kinasen (Plk), welche die Bildung von mitotischen Spindelfasern während der M-Phase regulieren. Wie bereits in vorhergehenden Studien gezeigt werden konnte, sind Plks auch an der Entstehung von Krebs beteiligt und daher interessante Ansatzpunkte für die Entwicklung von neuen Chemotherapeutika. Darüber hinaus zeigte sich auch, dass Sie zur Chemotherapie von parasitären Krankheiten Verwendung finden könnten, wie zur Behandlung von Schistosomiasis, welche durch Schistosoma mansoni ausgelöst wird. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung der Polo-like kinase 1 (Plk1) aus E. multilocularis, die Homologien zur humanen Plk1 und der aus S. mansoni (SmPlk1) aufweist und daher als Ansatzpunkt für eine neuartige chemotherapeutische Behandlung von AE angesehen werden kann. Es konnte gezeigt werden, dass EmPlk1 in germinativen Zellen (Stammzellen) des Parasiten stark exprimiert wird und das es möglich ist, dieses orthologe Protein mit nanomolekularer Konzentration (25 nM) des Plk1 Inhibitors BI 2536 in seiner zellulären Funktion zu hemmen. Darüber hinaus führt die Behandlung in vitro zu einem Verlust von Stammzellen im Larvenstadium von E. multilocularis, was zu einer drastischen Verminderung des Wachstums und der Entwicklung des Parasiten führt. Des Weiteren konnte sehr deutlich gezeigt werden, dass bei Verwendung des Inhibitors BI 2536 in Zellkultursystemen mit „Primärzellen“ (80% Stammzellen) des Parasiten diese nicht mit mehr in der Lage sind in Metacestoden zu regenerieren. Dabei ist entscheidend, dass die verwendeten Konzentrationen des Inhibitors BI 2536 innerhalb der gemessenen Plasmakonzentrationen von Krebspatienten liegen (50 nM nach 48 Stunden). Die Inhibierung der Plk1 wird daher als vielversprechender neuer Ansatzpunkt einer Chemotherapie zur Behandlung der AE angesehen. Die Inhibierung der EmPlk1 hat einen wesentlichen Einfluss auf die Differenzierung von Stammzellen des Parasiten, wodurch das Wachstum und die weitere Entwicklung des Parasiten gehemmt werden. Des Weiteren kann neben der chemotherapeutischen Behandlung der Inhibitor BI2536 auch für das weitere Studium von Stammzellen und deren zelluläre Funktion in E. multilocularis genutzt werden. Dafür wurden erste in vitro Experimente mittels Injektion in stammzellfreie Metacestoden Vesikel durchgeführt. Der zweite Teil dieser Arbeit befasst sich mit einem neuen Transmembranrezeptor in E. multilocularis, der hier als Venus-Fliegenfallen-Rezeptor charakterisiert wird. Dieser Rezeptortyp wurde erst kürzlich in S. mansoni beschrieben und steht im Zusammenhang mit der Entwicklung und dem Wachstum von Keimzellen des Parasiten. Der Rezeptor weist eine ungewöhnliche Zusammensetzung aus einer extrazellulären Venusfliegenfallendomäne (VFT) mit starker Ähnlichkeit zu GABA Rezeptoren auf (γ-amino-Buttersäure Typ B) und ist über eine einzelne Transmembrandomäne mit einer intrazellulären Tyrosinkinasedomäne verbunden, die eine hohe Homologie zu humanen Insulinrezeptoren zeigt. Der lange Genabschnitt (5112bp) von emvkr mit sequenzspezifischen Eigenschaften war schwierig zu klonieren, um eine anschließende Expression in Xenopus Oozyten durchzuführen. Bisher wurde dieser Rezeptor nur in Invertebraten beschrieben und stellt somit einen interessanten Ansatzpunkt für die Entwicklung von neuen Chemotherapeutika dar. In einem ersten Versuch wurde die Wirkung des ATP-Kompetitive Inhibitors AG 1024 in unserer in vitro Zellkultur untersucht. Zusammenfassend wurde die Relevanz von EmVKR als neuartiger Tyrosinkinaserezeptor in E. multilocularis verdeutlicht. In anschließenden Studien sollte die Aktivierung durch Ligandenbindung an den Rezeptor, sowie seine weitere zelluläre Funktion untersucht werden. Diese Erkenntnisse könnten dann eine entscheidende Rolle für die Entwicklung von neuen Medikamenten mit EmVKR spielen. Des Weiteren wurde die erfolgreiche Entfernung von Stammzellen aus Metacestoden Vesikel mit dem Plk1 Inhibitor BI 2536 gezeigt. Dies bietet nun die Option diesen Inhibitor auf das Wirkstoffziel EmPlk1 weiter zu optimieren. Darüber hinaus hat die Verwendung dieses Inhibitors den entscheidenden Zugang für eine neue Zellkulturtechnik ermöglicht, die das Studieren von Stammzellen und deren Einflussfaktoren in vitro bietet. KW - Chemotherapie KW - Echinococcus KW - Fuchsbandwurm KW - Stammzelle KW - Polo-like kinase 1 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113694 ER - TY - THES A1 - Röhrig, Florian T1 - Verbesserung der Medikamenteneinbringung in solide Tumoren durch Modifikation der extrazellulären Matrix T1 - Improving drug delivery into solid tumors by modification of the extracellular matrix N2 - Bei der Behandlung solider Tumoren spielen systemisch verabreichte Chemotherapeutika eine wich- tige Rolle. Allerdings akkumulieren diese Therapeutika besser in normalem Gewebe als in Tumoren. Als Ursache für diesen unzureichenden Transport von Medikamenten in den Tumor wurde bisher vor allem die dysfunktionale Tumorvaskulatur diskutiert. Diese befindet sich in einem chaotischen und unreifen Zustand ohne ausreichende Bedeckung der Gefäße mit stabilisierenden Perizyten. Aus dem Zustand der Vaskulatur resultierend erreichen Medikamente den Tumor nur in geringem Ausmaß und werden dort heterogen verteilt. Als Grund für den Zustand der Vaskulatur wur- de ein großer Überschuss an pro-angiogenetischen Faktoren im Tumor ausgemacht. Durch eine anti-angiogenetische Behandlung konnte in präklinischen Modellen für einen gewissen Zeitraum die Tumorvaskulatur „normalisiert“ werden. Dies zeichnete sich vor allem durch Veränderung von zwei wichtigen Parametern für die Medikamenteneinbringung aus: zum Einen kommt es zu einer Reduktion der Gefäßdichte. Zum Anderen zu einer Reifung der Blutgefäße. In einem Teil von Pati- enten scheint dabei der Effekt der Gefäßverbesserung zu überwiegen und es kann eine verbesserte Perfusion detektiert werden. Mutmaßlich führt dies auch zu einer verbesserten Einbringung von Therapeutika in den Tumor und so zu einer erhöhten Effizienz der Therapie. In einem weiteren Teil der Patienten scheint jedoch der Effekt der Gefäßreduktion zu überwiegen und die detektierte Perfusion im Tumor wird durch die Behandlung verringert. Das in dieser Arbeit verwendete MT6-Fibrosarkom-Modell reagierte auf eine anti-angiogenetische Therapie nicht mit einer sonst in murinen Modellen beobachteten Wachstumsreduktion. Die- se ermöglichte eine so bisher nicht mögliche Untersuchung der sekundären Effekte einer anti- angiogenetischen Therapie wie die Medikamenteneinbringung in den Tumor. Die Vaskulatur in MT6-Tumoren zeigte dabei nach einer anti-angiogenetischen Vorbehandlung, die erwarteten Merk-male einer „normalisierten“ Vaskulatur wie eine Reduktion der Gefäßdichte bei gleichzeitiger Rei- fung der verbleibenden Gefäße. Dies führte jedoch nicht zu einer verbesserten Effizienz einer subsequenten Chemotherapie. Durch Vergleich mit einem weiteren Tumor-Modell, dem 4T1-Modell für ein metastasierendes Mammakarzinom, konnten signifikante Unterschiede im Gefäßbild beider Modelle ausgeschlossen werden. Durch mikroskopische Methoden konnte dabei beobachtet werden, dass die Diffusion von Medikamenten aus den Blutgefäßen des MT6-Modells im Vergleich zum 4T1-Modell verringert war. Weitere Untersuchungen deuten auf eine Differenz in der Qualität der extrazellulären Matrix der verwendeten Tumor-Modelle. Durch mRNA-Expressionsanalysen konnte die Enzymfamilie der Lysyloxidasen als mögliche Ursache für diesen Diffusionsunterschied identi- fiziert werden. Lysyloxidasen katalysieren vor allem die Quervernetzung von Proteinen der Extra- zellulärmatrix. Im Weiteren konnte gezeigt werden, dass die Quervernetzung von Matrixproteinen durch Lysyloxidasen ursächlich für die Diffusions-Inhibierung kleiner Moleküle wie das Chemo- therapeutikum Doxorubicin sein kann. Durch spezifische Inhibition der Lysyloxidasen mittels des Inhibitors βAPN konnte diese Diffusions-Inhibition sowohl in vitro als auch im MT6-Tumor-Modell nahezu vollständig verhindert werden. Die hohe Aktivität von Lysyloxidasen im MT6-Modell stell- te allerdings kein Alleinstellungsmerkmal dieses Modells dar. In weiteren Untersuchungen konnte gezeigt werden, dass Lysyloxidasen in einer Vielzahl von murinen und humanen Tumorzelllinien überexprimiert wird. Die Inhibition von Lysyloxidasen durch βAPN konnte dabei in allen unter- suchten Modellen die Einbringung von Medikamenten in den Tumor erhöhen und könnte so eine sinnvolle adjuvante Maßnahme zur Verbesserung bestehender Chemotherapien darstellen. N2 - Systemically administered chemotherapeutics play a major role in in the treatment of so- lid tumors. However, these chemotherapeutics accumulate better in healthy tissue than in tumors. The reason for this insufficient transport of drugs into the tumor could be the dysfunctional tumor vasculature, which is in a chaotic and immature state without an adequate vessel coverage by stabilizing pericytes. As a result of this vasculature, only small amounts of drugs reach the tumor and are further just heterogeneously distributed. A great abundance of pro-angiogenic factors in the tumor was believed to cause this insufficient vasculature. In pre-clinical models, „normalization“ of the tumor vasculature could be achieved with anti-angiogenic therapy for a certain period of time. This was characterized by changes in two important parameters for drug administration: on the one hand reduction of vessel density, on the other hand maturation of blood vessels. In one part of patients, the effect of vessel normalization seems to be predominant leading to improved perfusion. Presumably, this leads to improved administration of chemotherapeu- tics into the tumor and therefore to a more efficient therapy. In another part of patients, the effect of vessel reduction seems to be predominant and the detectable perfusion in the tumor is decreased. The MT6 fibrosarcoma model, which was used in this work, did not respond to the anti-angiogenic therapy with an inhibition of tumor growth as usually observed in murine models. This observation enabled a so far not possible investigation of the secondary effects of an anti-angiogenic therapy, such as drug transport into the tumor. After the anti-angiogenic pre-treatment, the vasculature of MT6 tumors indicated the expected characteristics of a „normalized“ vasculature, such as reduction of vessel density and simultaneous maturation of remaining vessels. However, this did not lead to improved efficacy of subsequently administered chemotherapy. Comparison with another tumor model, the 4T1 model for metastasizing mamma carcinoma, did not reveal signifi- cant differences in the vessel pattern. Observation with microscopic methods indicated a reduced diffusion of drugs from the blood vessels of the MT6 model compared to those of the 4T1 model. Further investigations showed differences in the quality of the extracel- lular matrix of both used tumor models. mRNA expression analyses revealed the family of lysyl oxidases as a putative cause for the differences in diffusion. Lysyloxidases catalyze primarily the cross-linking of proteins of the extracellular matrix. Moreover, it was shown that the cross-linking of matrix proteins by lysyl oxidases is causative for the inhibition of diffusion of small molecules such as the chemotherapeutic doxorubicin. A specific inhibi- tion of lysyl oxidases with the inhibitor βAPN could almost entirely prevent the inhibition of diffusion in vitro and in the MT6 model. However, the high activity of lysyl oxidases in the MT6 model is not a unique feature of this model. Further investigations showed, that lysyl oxidases are over expressed in many human and murine tumor cell lines. In all investigated models, inhibition of lysyl oxidases with βAPN improved drug transport into the tumor and βAPN could therefore be a reasonable adjuvant therapy to improve the efficacy of already existing chemotherapeutics. KW - Lysin-Oxidase KW - Tumor KW - Angiogenese KW - Chemotherapie KW - extrazelluläre Matrix KW - Lysyloxidasen KW - Tumor KW - extrazelluläre Matrix KW - Lysyl oxidases KW - Tumour KW - extracellular matrix Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117381 ER -