TY - THES A1 - Weigl, Franziska T1 - Correlation of FluidFM® Technology and Fluorescence Microscopy for the Visualization of Cellular Detachment Steps T1 - Korrelation der FluidFM® Technologie und Fluoreszenzmikroskopie zur Visualisierung von zellulären Ablöseschritten N2 - This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion. N2 - Ziel dieser Arbeit war die Entwicklung eines korrelierten Gerätes, das FluidFM® mit Fluoreszenzmikroskopie (FL) kombiniert (FL-FluidFM®) und die gleichzeitige Quantifizierung von Adhäsionskräften und Fluoreszenzvisualisierung ausgereifter Zellen ermöglicht. Die Implementierung eines PIFOC war entscheidend, um eine hohe Auflösung sowie ein stabiles, aber dynamisches Fokusniveau zu erreichen. Die Funktionalität der SCFS nach der Hardwaremodifikation wurde durch den Vergleich zweier Kraftkurven verifiziert, die beide den typischen Kraftverlauf zeigten und jeweils mit der optimierten bzw. konventionellen Hardware gemessen wurden. Anschließend wurde die Integration von FL durch das Ablösen fluoreszenzmarkierter REF52-Zellen untersucht. Unter Fluoreszenzbeleuchtung des Zytoskeletts zeigte sich das erwartete charakteristische Kraftprofil und kein Hinweis auf Störeffekte. Anschließend wurde eine entsprechende korrelative Datenanalyse durchgeführt, die eine manuelle Kraftstufenanpassung, die Identifizierung der visualisierten zellulären Ablösung und eine zeitabhängige Korrelation umfasste. Dieses Verfahren ergab einen Zusammenhang zwischen dem Bereich der Zytoskelett-Ablösung und den Kraftsprüngen. Es folgte ein Vergleich der Ablösungseigenschaften von interzellulär verbundenen HUVECs und einzelnen REF52-Zellen. HUVECs zeigten maximale Ablösekräfte in der gleichen Größenordnung wie die von einzelnen REF52-Zellen. Dies stand im Gegensatz zu der erwarteten starken Kohäsion von Endothelzellen und deutete auf eine fehlende Zell-Zell-Kontaktbildung hin. Letzteres wurde durch einen Vergleich von HUVECs, primären HBMVECs und immortalisierten EA.hy926-Zellen bestätigt, die für zwei Markerproteine für interzelluläre Verbindungen fluoreszierend markiert wurden. Dabei zeigte sich, dass sowohl die vorherige Kultivierungsdauer als auch der Zelltyp einen großen Einfluss auf die Entwicklung von interzellulären Verbindungen haben. Zusammenfassend lässt sich sagen, dass das korrelative FL-FluidFM® einen leistungsstarken neuen Ansatz darstellt, der eine korrelative Durchführung ermöglicht und somit das Potenzial hat, neue Erkenntnisse über die mechanobiologischen Eigenschaften der Zelladhäsion zu liefern KW - Correlative microscopy KW - FluidFM KW - Fluorescence Microscopy KW - Cell adhesion KW - Korrelative Mikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-298763 ER - TY - THES A1 - Bathe-Peters, Marc T1 - Spectroscopic approaches for the localization and dynamics of β\(_1\)- and β\(_2\)-adrenergic receptors in cardiomyocytes T1 - Spektroskopieansätze zur Bestimmung der Lokalisation und Dynamiken von β\(_1\)- und β\(_2\)-Adrenozeptoren in Kardiomyozyten N2 - In the heart the β\(_1\)-adrenergic receptor (AR) and the β\(_2\)-AR, two prototypical G protein-coupled receptors (GPCRs), are both activated by the same hormones, namely adrenaline and noradrenaline. Both receptors couple to stimulatory G\(_s\) proteins, mediate an increase in cyclic adenosine monophosphate (cAMP) and influence the contractility and frequency of the heart upon stimulation. However, activation of the β\(_1\)-AR, not the β\(_2\)-AR, lead to other additional effects, such as changes in gene transcription resulting in cardiac hypertrophy, leading to speculations on how distinct effects can arise from receptors coupled to the same downstream signaling pathway. In this thesis the question of whether this distinct behavior may originate from a differential localization of these two receptors in adult cardiomyocytes is addressed. Therefore, fluorescence spectroscopy tools are developed and implemented in order to elucidate the presence and dynamics of these endogenous receptors at the outer plasma membrane as well as on the T-tubular network of intact adult cardiomyocytes. This allows the visualization of confined localization and diffusion of the β\(_2\)-AR to the T-tubular network at endogenous expression. In contrast, the β\(_1\)-AR is found diffusing at both the outer plasma membrane and the T-tubules. Upon overexpression of the β\(_2\)-AR in adult transgenic cardiomyocytes, the receptors experience a loss of this compartmentalization and are also found at the cell surface. These data suggest that distinct signaling and functional effects can be controlled by specific cell surface targeting of the receptor subtypes. The tools at the basis of this thesis work are a fluorescent adrenergic antagonist in combination of fluorescence fluctuation spectroscopy to monitor the localization and dynamics of the lowly expressed adrenergic receptors. Along the way to optimizing these approaches, I worked on combining widefield and confocal imaging in one setup, as well as implementing a stable autofocus mechanism using electrically tunable lenses. N2 - Im Herzen werden der β\(_1\)-adrenerge Rezeptor (AR) und der β\(_2\)-AR, zwei prototypische GPCR, durch die Hormone Adrenalin und Noradrenalin aktiviert. Dabei interagieren beide Rezeptoren mit dem stimulatorischen G\(_s\) Protein, bewirken eine Erhöhung des cyclischen Adenosinmonophosphates (cAMP) und beeinflussen die Kontraktionskraft und Frequenz des Herzens nach einem Stimulus. Jedoch hat die Aktivierung des β\(_1\)-ARs, nicht des β\(_2\)-ARs, auch weitere Effekte, wie z.B. Veränderungen in der Transkription von Genen. Dies wiederum führt zu Spekulationen, wie solch unterschiedliche Effekte von Rezeptoren hervorgerufen werden können, die gleiche Signalwege bedienen. In dieser Arbeit wird untersucht, ob dieses unterschiedliche Verhalten durch eine ungleiche Verteilung dieser beiden Rezeptoren in adulten Kardiomyozyten hervorgerufen werden könnte. Dazu wird die Lokalisation und die Dynamik dieser endogenen Rezeptoren in der Plasmamembran sowie im T-tubulären Netzwerk von intakten adulten Kardiomyozyten, unter Entwicklung und Verwendung hochsensitiver Fluoreszenzspektroskopiemethoden, bestimmt. Dies ermöglicht die örtliche und dynamische Eingrenzung des β\(_2\)-adrenergen Rezeptors unter endogener Expression ausschließlich auf das T-tubuläre Netzwerk. Dementgegen stellt sich heraus, dass sich der β\(_1\)-adrenerge Rezeptor ubiquitär auf der äußeren Membran und den T-Tubuli befindet und diffundiert. In β\(_2\)-AR überexprimierenden transgenen Kardiomyozyten hingegen werden diese Kompartments nicht beibehalten und es findet eine Umverteilung der Rezeptoren, auch unter Einbezug der Zelloberfläche, statt. Diese Daten können stärker darauf hindeuten, dass einige Rezeptorsubtypen sich gezielt und spezifisch bestimmte Zelloberflächen aussuchen, um somit ihre verschiedenen Signale und funktionären Effekte erzeugen zu können. Zu den Techniken, die in dieser Arbeit die Bestimmung der Lokalisation und der Dynamiken der niedrig exprimierten adrenergen Rezeptoren zulassen, gehört die Anwendung von Fluoreszenzspektroskopiemethoden in Kombination mit einem fluoreszierenden β-adrenergen Antagonisten. Weitere Techniken, die im Rahmen dieser Arbeit entwickelt wurden und in weiterführenden Studien aufschlussreiche Erkenntnisse liefern könnten, umfassen die Entwicklung eines Setups aus einer Kombination aus Weitfeld- und Konfokalmikroskopie und die Implementierung eines stabilen Autofokus mit Hilfe einer elektrisch veränderbaren Linse. KW - G-Protein gekoppelte Rezeptoren KW - Beta-Adrenozeptor KW - Kardiomyozyt KW - Fluoreszenzmikroskopie KW - Fluoreszenzkorrelationsspektroskopie KW - Fluorescence KW - Fluorescence Microscopy KW - G Protein-Coupled Receptor KW - Autofocus KW - Microscopy KW - Beta-Adrenergic Receptor KW - Cardiomyocyte KW - Fluorescence Correlation Spectroscopy KW - FCS KW - GPCR Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258126 ER - TY - THES A1 - Schreiber, Benjamin T1 - Selective and enhanced fluorescence by biocompatible nanocoatings to monitor G-protein-coupled receptor dynamics T1 - Selektive und verstärkte Fluoreszenz durch biokompatible Nanobeschichtungen zur Untersuchung von G-protein-gekoppelten Rezeptoren und ihrer Dynamik N2 - Fluorescence microscopy has become one of the most important techniques for the imaging of biological cells and tissue, since the technique allows for selective labeling with fluorescent molecules and is highly suitable for low-light applications down to the single molecule regime. The methodological requirements are well-defined for studying membrane receptors within a highly localized nanometer-thin membrane. For example, G-protein-coupled receptors (GPCRs) are an extensively studied class of membrane receptors that represent one of the most important pharmaceutical targets. Ligand binding and GPCR activation dynamics are suspected to take place at the millisecond scale and may even be far faster. Thus, techniques that are fast, selective, and live-cell compatible are required to monitor GPCR dynamics. Fluorescence resonance energy transfer (FRET) and total internal reflection fluorescence microscopy (TIRF-M) are methods of choice to monitor the dynamics of GPCRs selectively within the cell membrane. Despite the remarkable success of these modalities, there are limitations. Most importantly, inhomogeneous illumination can induce imaging artifacts, rendering spectroscopic evaluation difficult. Background signal due to scattering processes or imperfect labeling can hamper the signal-to-noise, thus limiting image contrast and acquisition speed. Careful consideration of the internal physiology is required for FRET sensor design, so that ligand binding and cell compatibility are well-preserved despite the fluorescence labeling procedures. This limitation of labeling positions leads to very low signal changes in FRET-based GPCR analysis. In addition, microscopy of these systems becomes even more challenging in single molecule or low-light applications where the accuracy and temporal resolution may become dramatically low. Fluorescent labels should therefore be brighter, protected from photobleaching, and as small as possible to avoid interference with the binding kinetics. The development of new fluorescent molecules and labeling methods is an ongoing process. However, a complete characterization of new labels and sensors takes time. So far, the perfect dye system for GPCR studies has not been found, even though there is high demand. Thus, this thesis explores and applies a different approach based on improved illumination schemes for TIRF-M as well as metal-coated coverslips to enhance fluorescence and FRET efficiency. First, it is demonstrated that a 360° illumination scheme reduces typical TIRF artifacts and produces a much more homogenously illuminated field of view. Second, membrane imaging and FRET spectroscopy are improved by metal coatings that are used to modulate the fluorescent properties of common fluorescent dyes. Computer simulation methods are used to understand the underlying photophysics and to design the coatings. Third, this thesis explores the operational regime and limitations of plasmonic approaches with high sectioning capabilities. The findings are summarized by three publications that are presented in the results section of this work. In addition, the theory of fluorescence and FRET is explained, with particular attention to its emission modulations in the vicinity of metal-dielectric layers. Details of the instrumentation, computer simulations, and cell culture are described in the method section. The work concludes with a discussion of the findings within the framework of recent technological developments as well as perspectives and suggestions for future approaches complete the presented work. N2 - Die Fluoreszenzmikroskopie ist zu einer der wichtigsten Techniken für die Bildgebung biologischer Zellen und Gewebe geworden, da die Technik eine selektive Markierung mit fluoreszierenden Molekülen ermöglicht und sich hervorragend für Anwendungen bei schwachem Licht bis hin zum Einzelmolekül-Regime eignet. Die methodischen Anforderungen sind gut definiert, um Membranrezeptoren innerhalb einer stark lokalisierten nanometerdünnen Membran zu untersuchen. Zum Beispiel sind G-Protein-gekoppelte Rezeptoren (GPCRs) eine ausführlich untersuchte Klasse von Membranrezeptoren, weil diese wichtige pharmazeutische Ziele darstellen. Es wird vermutet, dass die Ligandenbindungs- und GPCR-Aktivierungsdynamiken im Millisekundenbereich stattfinden und sogar viel schneller sein können. Daher sind Techniken erforderlich, die schnell, selektiv und lebend-Zell kompatibel sind, um die GPCR-Dynamik zu aufzunehmen. Fluoreszenzresonanzenergietransfer (FRET) und internale Totalreflexions-Fluoreszenzmikroskopie (TIRF-M) sind Methoden der Wahl, um die Dynamik von GPCRs selektiv innerhalb der Zellmembran zu untersuchen. Trotz des bemerkenswerten Erfolgs dieser Modalitäten gibt es Einschränkungen. Am wichtigsten ist, dass eine inhomogene Beleuchtung Artefakte erzeugen kann, welche die spektroskopische Auswertung erschweren. Hintergrundsignale aufgrund von Streuprozessen oder unvollständiger Markierung können das Signal-Rausch-Verhältnis beeinträchtigen und somit den Bildkontrast und die Erfassungsgeschwindigkeit begrenzen. Eine sorgfältige Berücksichtigung der internen Physiologie ist für das Design der FRET-Sensoren ist erforderlich, so dass die Ligandenbindung und die Zellkompatibilität trotz der Fluoreszenzmarkierungsverfahren nicht gestört werden. Diese Einschränkung der Markierungspositionen führt zu sehr geringen Signalkontrast in der FRET-basierten GPCR-Analyse. Darüber hinaus wird die Mikroskopie dieser Systeme bei Einzelmolekül- oder Schwachlichtanwendungen, bei denen die Genauigkeit und die zeitliche Auflösung dramatisch niedrig werden können, noch schwieriger. Fluoreszierende Marker sollten daher heller, vor Photobleichung geschützt und so klein wie möglich sein, um Störungen mit der Rezeptorkinetik zu vermeiden. Die Entwicklung neuer fluoreszierender Moleküle und Markierungsmethoden ist ein fortlaufender Prozess. Eine vollständige Charakterisierung neuer Marker und Sensoren benötigt jedoch Zeit. Bis jetzt wurde das perfekte Farbstoffsystem für GPCR-Studien noch nicht gefunden, auch wenn es eine hohe Nachfrage dafür gibt. Daher wird ein anderer Ansatz auf der Grundlage verbesserter Beleuchtungsschemata für TIRF-M sowie metallbeschichtete Deckgläser zur Verbesserung der Fluoreszenz- und FRET-Effizienz untersucht. Zunächst wird gezeigt, dass ein 360 ° Beleuchtung typische TIRF-Artefakte reduziert und ein wesentlich homogeneres Bildausleuchtung erzeugt. Zweitens wurde durch die Modulation der Fluoreszenzeigenschaften gängiger Fluoreszenzfarbstoffe die Membranbildgebung und FRET-Spektroskopie verbessert. Computersimulationsmethoden werden verwendet, um die zugrundeliegende Photophysik zu verstehen und zielgerichtet Beschichtungen zu entwerfen. Drittens wurden das operationelle Regime und die Grenzen von plasmonischen Ansätzen mit noch höheren Signalselektiverung untersucht. Die Ergebnisse sind in drei Publikationen zusammengefasst, die im Ergebnisteil dieser Arbeit vorgestellt werden. Darüber hinaus wird die Theorie der Fluoreszenz und des FRET unter besonderer Berücksichtigung ihrer Emissionsmodulationen in der Nähe von Metall-Dielektrikum-Schichten erläutert. Details der Instrumentierung, Computersimulationen und Zellkultur werden im Abschnitt Methoden beschrieben. Die Arbeit schließt mit einer Diskussion der Ergebnisse im Rahmen der jüngsten technologischen Entwicklungen sowie mit Perspektiven und Vorschlägen für zukünftige Ansätze, die die vorliegende Arbeit abrunden. KW - G-Protein gekoppelte Rezeptoren KW - Fluorescence KW - Microscopy KW - Plasmonic KW - Fluorescence Resonance Energy Transfer KW - G Protein-Coupled Receptors KW - Fluoreszenzmikroskopie KW - Fluorescence Microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-173923 ER -