TY - JOUR A1 - Arrowsmith, Merle A1 - Endres, Sara A1 - Heinz, Myron A1 - Nestler, Vincent A1 - Holthausen, Max C. A1 - Braunschweig, Holger T1 - Probing the Boundaries between Lewis-Basic and Redox Behavior of a Parent Borylene JF - Chemistry—A European Journal N2 - The parent borylene (CAAC)(Me\(_{3}\)P)BH, 1 (CAAC=cyclic alkyl(amino)carbene), acts both as a Lewis base and one-electron reducing agent towards group 13 trichlorides (ECl\(_{3}\), E=B, Al, Ga, In), yielding the adducts 1-ECl\(_{3}\) and increasing proportions of the radical cation [1]\(^{•+}\) for the heavier group 13 analogues. With boron trihalides (BX\(_{3}\), X=F, Cl, Br, I) 1 undergoes sequential adduct formation and halide abstraction reactions to yield borylboronium cations and shows an increasing tendency towards redox processes for the heavier halides. Calculations confirm that 1 acts as a strong Lewis base towards EX3 and show a marked increase in the B−E bond dissociation energies down both group 13 and the halide group. KW - redox processes KW - bond dissociation energies KW - borylene KW - group 13 KW - Lewis adducts Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-257154 VL - 27 IS - 70 ER - TY - INPR A1 - Böhnke, Julian A1 - Arrowsmith, Merle A1 - Braunschweig, Holger T1 - Activation of a Zerovalent Diboron Compound by Desymmetrization T2 - Journal of the American Chemical Society N2 - The desymmetrization of the cyclic (alkyl)(amino)carbene-supported diboracumulene, B\(_2\)(cAAC\(^{Me}\))\(_2\) (cAAC\(^{Me}\) = 1- (2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene) by mono-adduct formation with IMe\(^{Me}\) (1,3-dimethylimidazol-2-ylidene) yields the zerovalent sp-sp\(^2\) diboron compound B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)), which provides a versatile platform for the synthesis of novel symmetrical and unsymmetrical zerovalent sp\(^2\)-sp\(^2\) diboron compounds by adduct formation with IMe\(^{Me}\) and CO, respectively. Furthermore, B\(_2\)(cAAC\(^{Me}\))\(_2\)(IMe\(^{Me}\)) displays enhanced reactivity compared to its symmetrical precursor, undergoing spontaneous intramolecular C-H activation and facile twofold hydrogenation, the latter resulting in B-B bond cleavage and the formation of the mixed-base parent borylene, (cAAC\(^{Me}\))(IMe\(^{Me}\))BH. KW - diboryne KW - boron KW - carbenes KW - low-valent main group chemistry KW - erovalent diboron compounds KW - desymmetrization KW - bond activation KW - hydrogenation KW - borylene Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-167983 N1 - This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Journal of the American Chemical Society, copyright © American Chemical Society after peer review. To access the final edited and published work see https://doi.org/10.1021/jacs.8b06930 (Julian Böhnke, Merle Arrowsmith, and Holger Braunschweig: Reactivity Enhancement of a Zerovalent Diboron Compound by Desymmetrization, Journal of the American Chemical Society 2018, 140, (32), 10368-10373. DOI: 10.1021/jacs.8b06930) ER - TY - INPR A1 - Stennett, Tom A1 - Mattock, James A1 - Vollert, Ivonne A1 - Vargas, Alfredo A1 - Braunschweig, Holger T1 - Unsymmetrical, Cyclic Diborenes and Thermal Rearrangement to a Borylborylene T2 - Angewandte Chemie, International Edition N2 - Cyclic diboranes(4) based on a chelating monoanionic, benzylphosphine linker were prepared by boron-silicon exchange between arylsilanes and B\(_2\)Br\(_4\). Coordination of Lewis bases to the remaining sp\(^2\) boron atom yielded unsymmetrical sp\(^3\)-sp\(^3\) diboranes, which were reduced with KC\(_8\) to their corresponding trans-diborenes. These compounds were studied by a combination of spectroscopic methods, X-ray diffraction and DFT calculations. PMe\(_3\)-stabilized diborene 6 was found to undergo thermal rearrangement to gem- diborene 8. DFT calculations on 8 reveal a polar boron-boron bond, and indicate that the compound is best described as a borylborylene. KW - boron KW - borylene KW - multiple bonds KW - rearrangement KW - DFT calculations Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160258 N1 - This is the pre-peer reviewed version of the following article: T. E. Stennett, J. D. Mattock, I. Vollert, A. Vargas, H. Braunschweig, Angew. Chem. Int. Ed. 2018, 57, 4098., which has been published in final form at DOI: 10.1002/anie.201800671. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. VL - 57 ER - TY - JOUR A1 - Braunschweig, Holger A1 - Kramer, T. T1 - Crystal structure of μ-1κC:2(\(η^2\))-carbonyl-carbonyl-1κC-chlorido-2κCl-μ-chloridoborylene-1:2\(κ^2\) B:B-[1(\(η^5\))-pentamethylcyclopentadienyl](tricyclohexylphosphane-2κP)iron(II)platinum(II) benzene monosolvate N2 - In the mol­ecular structure of the dinuclear title compound \([η^5-(C_5(CH_3)_5)(CO)Fe{(μ-BCl)(μ-CO)}PtCl(P(C_6H_{11})_3)]·C_6H_6\), the two metal atoms, iron(II) and platinum(II), are bridged by one carbonyl (μ-CO) and one chlorido­borylene ligand (μ-BCl). The \(Pt^{II}\) atom is additionally bound to a chloride ligand situated trans to the bridging borylene, and a tri­cyclo­hexyl­phosphane ligand \((PCy_3)\) trans to the carbonyl ligand, forming a distorted square-planar structural motif at the \(Pt^{II}\) atom. The \(Fe_{II}\) atom is bound to a penta­methyl­cyclo­penta­dienyl ligand \([η^5-C_5(CH_3)_5]\) and one carbonyl ligand (CO), forming a piano-stool structure. Additionally, one benzene solvent mol­ecule is incorporated into the crystal structure, positioned staggered relative to the penta­methyl­cyclo­penta­dienyl ligand at the \(Fe^{II}\) atom, with a centroid–centroid separation of 3.630 (2) Å. KW - platinum KW - oxidative addition KW - borylene KW - heterodinuclear compound KW - crystal structure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120120 VL - 70 IS - 11 ER -