TY - THES A1 - Hansen, Nis Hauke T1 - Mikroskopische Ladungstransportmechanismen und Exzitonen Annihilation in organischen Einkristallen und Dünnschichten T1 - Microscopic charge transport mechanisms and exciton annihilation in organic thin films and single crystals N2 - Um die Natur der Transportdynamik von Ladungsträgern auch auf mikroskopischen Längenskalen nicht-invasiv untersuchen zu können, wurde im ersten Schwerpunkt dieser Arbeit das PL- (Photolumineszenz-) Quenching (engl.: to quench: löschen; hier: strahlungslose Rekombination von Exzitonen) in einer organischen Dünnschicht durch die injizierten und akkumulierten Löcher in einer Transistorgeometrie analysiert. Diese Zusammenführung zweier Methoden - der elektrischen Charakterisierung von Dünnschichttransistoren und der Photolumineszenzspektroskopie - erfasst die Änderung des strahlenden Zerfalls von Exzitonen infolge der Wechselwirkung mit Ladungsträgern. Dadurch werden räumlich aufgelöste Informationen über die Ladungsverteilung und deren Spannungsabhängigkeit im Transistorkanal zugänglich. Durch den Vergleich mit den makroskopischen elektrischen Kenngrößen wie der Schwell- oder der Turn-On-Spannung kann die Funktionsweise der Transistoren damit detaillierter beschrieben werden, als es die Kenngrößen alleine ermöglichen. Außerdem wird die Quantifizierung dieser mikroskopischen Interaktionen möglich, welche beispielsweise als Verlustkanal in organischen Photovoltaikzellen und organicshen Leuchtdioden auftreten können. Die Abgrenzung zu anderen dissipativen Prozessen, wie beispielsweise der Exziton-Exziton Annihilation, Ladungsträgerrekombination, Triplett-Übergänge oder Rekombination an Störstellen oder metallischen Grenzflächen, erlaubt die detaillierte Analyse der Wechselwirkung von optisch angeregten Zuständen mit Elektronen und Löchern. Im zweiten Schwerpunkt dieser Arbeit werden die Transporteigenschaften des Naphthalindiimids Cl2-NDI betrachtet, bei dem der molekulare Überlapp sowie die Reorganisationsenergie in derselben Größenordnung von etwa 0,1 eV liegen. Um experimentell auf den mikroskopischen Transport zu schließen, werden nach der Optimierung des Kristallwachstums Einkristalltransistoren hergestellt, mit Hilfe derer die Beweglichkeit entlang verschiedener kristallographischer Richtungen als Funktion der Temperatur gemessen werden kann. Die einkristalline Natur der Proben und die spezielle Transistorgeometrie ermöglichen die Analyse der räumlichen Anisotropie des Stromflusses. Der gemessene Beweglichkeitstensor wird daraufhin mit simulierten Tensoren auf der Basis von Levich-Jortner Raten verglichen, um auf den zentralen Ladungstransfermechanismus zu schließen. N2 - In order to study charge transport in organic thin-film transistors on a microscopic length scale noninvasively, photoluminescence quenching by injected holes in transistor geometry was analyzed. The combination of these two techniques – the electrical characterization of transistors and the photoluminescence spectroscopy – captures the variation of radiative recombination of excitons, which results from the interaction with the accumulated charge carriers. Thereby, spatially resolved information about the charge distribution and its voltage dependence in the transistor channel become accessible. By comparison with the macroscopic electrical parameters, such as the threshold voltage or the turn-on voltage, the mode of operation of the transistors can thus be described in more detail than the characteristic values alone permit. In addition, the quantification of these microscopic interactions becomes possible, which can occur, for example, as a loss channel in organic photovoltaic cells and organic light-emitting diodes. The delimitation to other dissipative processes, such as exciton-exciton annihilation, charge carrier recombination, triplet transitions or recombination at impurities or metallic interfaces, allows the detailed analysis of the interaction of optically excited states with electrons and holes. The second focus of this work is on the transport properties of the naphthalene diimide Cl2-NDI in which the molecular overlap as well as the reorganization energy are of the same order of magnitude of approximately 0.1 eV. In order to close experimentally on the microscopic transport, after the optimization of crystal growth, single crystal transistors are produced by means of which the mobility along different crystallographic directions can be measured as a function of the temperature. The single crystal nature of the samples and the special transistor geometry allow the analysis of the spatial anisotropy of the current flow. The measured mobility tensor is then compared with simulated tensors based on Levich-Jortner rates to infer the central charge transfer mechanism. KW - Organischer Halbleiter KW - Ladungstransport KW - organic field-effect transistor KW - photoluminescence spectroscopy KW - electronic transport KW - single crystal KW - Organischer Feldeffekttransistor KW - Photolumineszenzspektroskopie KW - Elektronischer Transport KW - Einkristall Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143972 ER - TY - JOUR A1 - He, Tao A1 - Stolte, Matthias A1 - Burschka, Christian A1 - Hansen, Nis Hauke A1 - Musiol, Thomas A1 - Kälblein, Daniel A1 - Pflaum, Jens A1 - Tao, Xutang A1 - Brill, Jochen A1 - Würthner, Frank T1 - Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air JF - Nature Communications N2 - Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps. KW - thin-film transistors KW - carrier transport KW - \(\beta\)-phase KW - organic semiconductors KW - induced phase transition KW - charge transport KW - materials design KW - \(\alpha\)-phase KW - mobility KW - pentacene Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149255 VL - 6 IS - 5954 ER -