TY - THES A1 - Shuvaev, Alexey T1 - Spectroscopic study of manganites with magnetoelectric coupling T1 - Spektroskopische Untersuchungen an Manganoxyd-verbindungen mit magnetoelektrischer Kopplung N2 - The present thesis is devoted to the spectroscopic study of rare earth manganites RMnO3 (R = Gd, Dy, Tb, Eu(1 - x)Y(x)) in the submillimeter frequency range. A dynamic manifestation of a strong magnetoelectric coupling in these systems is the existence of electromagnons - spin waves excited by the electric component of the electromagnetic wave. The exact analytical solution of the Landau-Lifshitz equations obtained for cycloidal antiferromagnets builds the bridge between the inelastic neutron scattering and the optical experiments. A semi-quantitative agreement is achieved between the theory and the results by these two experimental techniques. Two suggested mechanisms of the magnetoelectric coupling, the inverse Dzyaloshinskii-Moriya (IDM) interaction and the symmetric Heisenberg exchange (HE) striction, are introduced in a perturbative manner. The qualitative conclusions regarding both static and dynamic electric properties are also in agreement with the experiment. GdMnO3 is the system in which the electromagnons were first detected at low frequencies. Far infrared measurements in GdMnO3 presented here have confirmed the existence of a second high frequency electromagnon at 75 reciprocal centimeter. The detection of an additional mode suggests the existence of at least short range ferroelectric order. Such order has not been observed in static experiments so far. The electromagnons in Eu(1 - x)Y(x)MnO3 helped to clarify the role of the rare earth magnetism. As the Y(3+) ions are diamagnetic and Eu(3+) ions possess Van Vleck paramagnetism only, it is the Mn subsystem that is primarily responsible for the magnetoelectric properties of rare earth manganites. The electromagnons in DyMnO3 and TbMnO3 do not change their excitation conditions upon the flop of the spin cycloid in external magnetic fields. This fact still lacks consistent theoretical explanation. Detailed measurements on TbMnO3 of different orientations have allowed to prove the existence of the IDM electromagnon. The study of DyMnO3 in external magnetic fields has shown that, depending on the Dy ordering, the electromagnons and static electric polarization can be either enhanced or suppressed. Thus, the magnetic order of rare earth moments still plays an important role. As a general result of the present work, the IDM interaction is capable to describe the static electric polarization and the weak electro-active excitation in the high-field phase of TbMnO3. The HE model is successful in explaining the high frequency electromagnon, including its excitation conditions and the spectral weight. However, both models are still unable to describe the energy and the spectral weight of the low frequency electromagnon. Further theoretical and experimental efforts are required in this direction. N2 - Die vorliegende Dissertation befasst sich mit den spektroskopischen Untersuchungen von Manganaten der Seltenen Erden im Bereich der Submillimeterwellen. Spektroskopisches Merkmal der starken elektromagnetischen Kopplung ist die Existenz der Elektromagnonen - Spinwellen, die durch das elektrische Feld des Lichtes angeregt werden. Die Lösung der Landau-Lifshitz Gleichungen für die zykloidale magnetische Ordnung verbindet die inelastische Neutronstreuung mit den optischen Experimenten. Eine halbquantitative Übereinstimmung wurde zwischen der Theorie und diesen zwei experimentellen Techniken erreicht. Zwei Mechanismen der magnetoelektrischen Kopplung, die inverse Dzyaloshinskii-Moriya (IDM) Wechselwirkung und das auf den symmetrischen Heisenberg Austausch basierte Modell, werden in einer perturbativen Art eingefürt. Die Ferninfrarotmessungen an GdMnO3 zeigen die Existenz eines zweiten Elektromagnons bei 75 Reziprokzentimeter. Diese Beobachtung deutet auf die Existenz von zumindest kurzweitigen ferroelektrischen Ordnungsparameter in GdMnO3. Die Untersuchung der Elektromagnonen in Eu(1 - x)Y(x)MnO3 Mischsystemen hat die Rolle des Magnetismus der Seltenen Erden geklärt. Nachdem Y(3+) Ionen diamagnetisch sind und Eu(3+) Ionen nur Van Vleck Paramagnetismus aufweisen, ist das Mn Untersystem vorrangig für die magnetoelektrischen Eigenschaften der Selten-Erd-Manganaten verantwortlich. Die Untersuchung von DyMnO3 in äußeren Magnetfeldern hat gezeigt, dass, je nach magnetischer Ordnung von Dy, die Elektromagnonen und die statische elektrische Polarization entweder erhöht oder unterdrückt werden können. Daher spielt die magnetische Ordnung der Seltenen Erde eine wichtige Rolle. Nach der Rotation der Spinzykloide in äußeren Magnetfeldern ändern die Elektromagnonen in DyMnO3 und TbMnO3 ihre Auswahlregeln nicht. Für diese Beobachtung fehlt jedoch noch eine übereinstimmende theoretische Erklärung. Die genauen Messungen von unterschiedlich orientierten TbMnO3 Proben ermöglichten einen schwachen elektrischen Beitrag bei 21 Reziprokzentimeter zu detektieren. Das ist die erste direkte Beobachtung einer dynamischen Anregung der IDM Wechselwirkung. Zusammenfassend, kann die IDM Wechselwirkung die statische elektrische Polarization und die schwache elektrische Anregung in der Hochfeldphase von TbMnO3 gut beschreiben. Das HE Modell wird erfolgreich bei der Erklärung des Hochfrequenzelektromagnons, dessen Auswahlregeln und des Spektralgewichts angewandt. Beide Modelle sind jedoch noch nicht in der Lage die Energie und das Spektralgewicht des Niederfrequenzelektromagnons zu beschreiben. Weitere theoretische Anstrengungen sind nötig um die noch verbleibenden offenen Fragen zu klären. KW - Manganverbindungen KW - Seltenerdverbindungen KW - FIR-Spektroskopie KW - Terahertz KW - Elektromagnon KW - Seltene Erden KW - Inkommensurable Zykloide KW - Magnetoelektrischer Effekt KW - Terahertz spectroscopy KW - Rare earth manganites KW - Electromagnon KW - Magnetoelectric effect KW - Incommensurate spin structure KW - Spektroskopie KW - Multiferroikum KW - Manganate KW - Dielektrikum KW - Magnon Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78719 ER - TY - THES A1 - Issing, Sven T1 - Correlation between Lattice Dynamics and Magnetism in the Multiferroic Manganites T1 - Korrelation von Kristallgitterdynamik und Magnetismus in den Multiferroischen Manganaten N2 - In this thesis a systematic analysis of the correlation effects between lattice dynamics and magnetism in the Multiferroic Manganites RMnO3 with Pnma structure was conducted. For this task, Raman and FT-IR Spectroscopy were employed for an investigation of all optically accessible lattice vibrations, i.e. phonons. To study the correlation effects as well as their specific connections to symmetry and compositional properties of the Multiferroic Manganites, the polarisation and temperature dependence of the phonons were considered explicitly. In combination with lattice dynamical calculations based on Density Functional Theory, two coupling effects - Spin-Phonon Coupling and Electromagnon-Phonon Coupling - were systematically analysed. N2 - Grundlegendes Verständnis der physikalischen Zusammenhänge innerhalb multifunktionaler Materialien im Hinblick auf spätere potentielle Anwendungen ist eines der Hauptziele der heutigen Forschungsbemühungen in der Festkörperphysik. Im Wesentlichen geht es dabei um das Ausnutzen von intrinsischen Kopplungseffekten, um zusätzliche Funktionalität im Vergleich zur heutigen auf Miniaturisierung von halbleiterbasierten Bauelementen aufbauenden Informationstechnologie zu erreichen. Die vorgelegte Dissertation zielt in dies em Themengebiet auf die systematische Untersuchung der Kopplungseffekte zwischen Kristallgitterdynamik und Magnetismus in den multiferroischen Manganaten ab. Konkret geht es um das Modelsystem der multiferroischen Selten-Erd-Manganate RMnO3 mit orthorhombischer Pnma-Struktur. Die zu diesem Zweck verwendeten experimentellen Techniken waren Raman und Fourier-Transform Infrarot (FT-IR) Spektroskopie, mit deren Hilfe alle optisch aktiven Kristallgitterschwingungen dieser Systeme spektroskopiert werden konnten. Zur Untersuchung der Kopplungseffekte wurden die spektroskopischen Experimente polarisationssensitiv und unter Variation der Probentemperatur durchgeführt, um insbesondere Renormalisierungseffekte der Gitterschwingungen im Temperaturbereich magnetischer Phasenübergänge nachweisen zu können. In Verbindung mit gitterdynamischen Rechnungen, die auf der Dichtefunktionaltheorie (DFT) basieren, wurden zwei Kopplungseffekte systematisch untersucht: Spin-Phonon Kopplung (SPC) sowie Elektromagnon-Phonon Kopplung (EMPC). KW - FT-IR-Spektroskopie KW - Multiferroikum KW - Magnetoelektrischer Effekt KW - Manganate KW - Magneto-Elektrischer Effekt KW - Raman-Spektroskopie KW - Manganate KW - Dichtefunktionalformalismus KW - Magneto-Electric Effect KW - Multiferroics Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-66283 ER - TY - THES A1 - Weigand, Frank T1 - XANES und MEXAFS an magnetischen Übergangsmetalloxiden : Entwicklung eines digitalen Lock-In-XMCD-Experiments mit Phasenschieber T1 - XANES and MEXAFS studies of magnetic transition metal oxides Development of a digital Lock-In XMCD experiment with phase retarder N2 - In dieser Arbeit werden drei Lanthanmanganat-Systeme mittels SQUID-(Superconducting Quantum Interference Device) Magnetometrie und XMCD-(X-ray Magnetic Circular Dich-roism) Messungen an den jeweiligen Absorptionskanten (XANES: X-ray Absorption Near Edge Structure) sowie im kantenfernen Bereich (MEXAFS: Magnetic Extended X-ray Ab-sorption Fine Structure) im Hinblick auf die Klärung ihrer magnetischen (Unter-)Struktur untersucht. Bei Lanthanmanganaten wird sowohl im Verlauf des spingemittelten als auch spinabhängigen Absorptionskoeffizienten an der Mn K Kante immer eine energetisch über 40eV ausgedehnte Doppelstruktur beobachtet. Durch Vergleich mit theoretischen Bandstrukturrechnungen und Messungen an Referenzsystemen lassen sich diese Strukturen auf zwei energetisch getrennte, resonante Übergänge in leere Mn 4p Zustände zurückführen. Die Ursachen liegen in der Kristallstruktur der Lanthanmanganate und damit ihrer Bandstruktur begründet. XMCD-Messungen an den La L2,3 Kanten zeigen, dass dieses Element zur Gesamtmagnetisierung dieser Verbindungen nur ein unerhebliches Moment beiträgt und daher in einer Xenon-ähnlichen Elektronenkonfiguration vorliegt. Durch die interatomare Coulombwechselwirkung der nahezu unbesetzten La 5d Zustände mit den magnetisch aktiven Ionen im Kristall dienen XMCD-Messungen an den La L2,3 Kanten als Sonde für die magnetische Lanthanumgebung. Ähnliches gilt für die entsprechenden MEXAFS. Der proportionale Zusammenhang der Größe der MEXAFS mit dem Spinmoment der Nachbarionen besitzt auch bei den Lanthanmanganat-Systemen mit den stark hybridisierten Elektronen der Mn 3d Schale Gültigkeit. Der Spinmoment-Korrelationskoeffizient aSpin gilt auch hier, was eine weitere Bestätigung des MEXAFS-Modells auch für oxidische Systeme ist. Im dotierten System La1.2Nd0.2Sr1.6Mn2O7 koppelt das Neodymmoment innerhalb einer Doppellage antiferromagnetisch zum Mn-Untergitter. Durch die Neodym-Dotierung am La/Sr-Platz im Kristall ist die ferromagnetische Kopplung der Doppellagen untereinander abge-schwächt und die Rückkehr in die antiferromagnetische Phase nach dem Abschalten des äußeren Magnetfeldes damit erleichtert. Das Mn-Bahnmoment ist von nahezu verschwindender Größe („gequencht“). Das System La1.2Sr1.8Mn2-xRuxO7 zeigt mit zunehmendem Rutheniumgehalt eine Erhöhung der Curie-Temperatur, was bei Ruddlesden-Popper Phasen zum ersten Mal beobachtet wurde. Das Ru-Untergitter und das Mn-Gitter sind zueinander antiparallel gekoppelt. Durch Bestimmung der Valenzen von Mn und Ru wird ein dem Superaustausch ähnliches Kopplungsmodell entworfen, womit der Anstieg in der Curie-Temperatur erklärbar ist. Das neu entwickelte XMCD-Experiment auf Basis eines Phasenschiebers und digitaler Sig-nalaufbereitung durch eine Lock-In Software besitzt ein Signal-Rausch Verhältnis in der Nähe der Photonenstatistik und liefert einen großen Zeit- und Qualitätsgewinn gegenüber Messmethoden mit Magnetfeldwechsel. Auf teure analoge Lock-In Messverstärker kann verzichtet werden. Zukünftig erweitert sich mit diesem Aufbau die für XMCD-Experimente zugängliche Anzahl an Synchrotronstrahlplätzen. Diese Experimente sind jetzt auch mit linear polarisierter Röntgenstrahlung an Wiggler/Undulator Strahlplätzen und zukünftigen XFELs (X-ray Free Electron Laser) durchführbar. N2 - In this work three Lanthanum Manganate systems are investigated in terms of their magnetic (sub) structures. These investigations are done with SQUID- (Superconducting Quantum Interference Device) magnetometry and XMCD- (X-ray Magnetic Circular Dichroism) measurements at the respective absorption edges (XANES: X-ray Absorption Near Edge Structure) as well as in the MEXAFS (Magnetic Extended X-ray Absorption Fine Structure) range. For Lanthanum Manganates at the Mn K edge there is always seen a double peak structure in the shape of the spin dependent and spin averaged absorption coefficient, which is energetically expanded over more than 40eV. These structures are ascribed to two energetic separated, resonant transitions into empty Mn 4p states by comparing with theoretical band structure calculations and measurements of reference systems and are caused in the crystal structure of the Lanthanum Manganates and with it their band structure. XMCD-measurements at the La L2,3 edges show that this element adds only a negligible magnetic moment to the total magnetisation and La is therefore in a Xenon-like electronic configuration. These measurements probe the magnetic neighbourhood of the Lanthanum in the crystal due to the interatomic Coulomb interaction of the almost empty La 5d states with the magnetic active ions like the MEXAFS. The proportionality of the MEXAFS amplitude with the spin-moment of the neighboring ions is even valid here for Lanthanum Manganate systems with their strongly hybridized Mn 3d shell electrons. The validity of the correlation coefficient of the spin-moment aSpin confirms the MEXAFS-model also for oxide systems. In the doped system La1.2Nd0.2Sr1.6Mn2O7 the Neodymium moment couples antiferromagnetically with the Mn-sublattice within a double layer. The ferromagnetic coupling of the double layers is weak among each other due to the Nd doping at the La/Sr crystal position. Therefore the reversion into the antiferromagnetic phase is relieved after switching off the external magnetic field. The orbital moment of Mn is almost vanishing (“quenched”). The system La1.2Sr1.8Mn2-xRuxO7 shows an increasing of the Curie-temperature with an increase of the Ruthenium doping level, observed for the first time for Ruddlesden-Popper phases. The Ru-sublattice is antiparallel coupled to the Mn-sublattice. A superexchange like coupling model is composed through determination of the valences of Mn and Ru, also explaining the increase of the Curie-temperature. A new XMCD-experiment is developed with phase retarder and digital signal processing through Lock-In software with signal to noise ratio nearby photon statistics. This experiment provides a huge benefit in time and quality compared to XMCD-measurement with changing the external magnetic field. Also there is no need of expensive Lock-In analog amplifiers. Now the number of synchrotron beamlines for XMCD-measurements are increased and XMCD-experiments are realizable also at Wiggler/Undulator beamlines with linear polarized radiation and in future at XFEL (X-ray Free Electron Laser). KW - Lanthanoxid KW - Manganate KW - XANES KW - EXAFS KW - Röntgenzirkulardichroismus KW - Perowskite KW - CMR-Systeme KW - Phasenschieber KW - digitaler Lock-In KW - XMCD KW - perovskites KW - CMR-systems KW - phase retarder KW - digital Lock-In Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8849 ER -