TY - JOUR A1 - Fujiwara, Yuri A1 - Hermann-Luibl, Christiane A1 - Katsura, Maki A1 - Sekiguchi, Manabu A1 - Ida, Takanori A1 - Helfrich-Förster, Charlotte A1 - Yoshii, Taishi T1 - The CCHamide1 Neuropeptide Expressed in the Anterior Dorsal Neuron 1 Conveys a Circadian Signal to the Ventral Lateral Neurons in Drosophila melanogaster JF - Frontiers in Physiology N2 - The fruit fly Drosophila melanogaster possesses approximately 150 brain clock neurons that control circadian behavioral rhythms. Even though individual clock neurons have self-sustaining oscillators, they interact and synchronize with each other through a network. However, little is known regarding the factors responsible for these network interactions. In this study, we investigated the role of CCHamide1 (CCHa1), a neuropeptide expressed in the anterior dorsal neuron 1 (DN1a), in intercellular communication of the clock neurons. We observed that CCHa1 connects the DN1a clock neurons to the ventral lateral clock neurons (LNv) via the CCHa1 receptor, which is a homolog of the gastrin-releasing peptide receptor playing a role in circadian intercellular communications in mammals. CCHa1 knockout or knockdown flies have a generally low activity level with a special reduction of morning activity. In addition, they exhibit advanced morning activity under light-dark cycles and delayed activity under constant dark conditions, which correlates with an advance/delay of PAR domain Protein 1 (PDP1) oscillations in the small-LNv (s-LNv) neurons that control morning activity. The terminals of the s-LNv neurons show rather high levels of Pigment-dispersing factor (PDF) in the evening, when PDF is low in control flies, suggesting that the knockdown of CCHa1 leads to increased PDF release; PDF signals the other clock neurons and evidently increases the amplitude of their PDP1 cycling. A previous study showed that high-amplitude PDP1 cycling increases the siesta of the flies, and indeed, CCHa1 knockout or knockdown flies exhibit a longer siesta than control flies. The DN1a neurons are known to be receptive to PDF signaling from the s-LNv neurons; thus, our results suggest that the DN1a and s-LNv clock neurons are reciprocally coupled via the neuropeptides CCHa1 and PDF, and this interaction fine-tunes the timing of activity and sleep. KW - circadian clock KW - circadian rhythm KW - CCHamide1 KW - pacemaker neuron KW - neuropeptide KW - pigment-dispersing factor Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195940 SN - 1664-042X VL - 09 ER - TY - THES A1 - Hansen, Immo A. T1 - Hexamerine und Neuropeptide in der postembryonalen Entwicklung der Insekten T1 - Hexamerins and Neuropeptides during the postembryonic development of insects N2 - Das Ziel der vorliegenden Dissertation war die Entwicklung neuartige Ansätze zur Identifizierung von biologisch aktiven Wirkstoffen, die in die Metamorphose von holometabolen Insekten eingreifen. Hexamerine und Neuropeptide besitzen sehr unterschiedliche Funktionen. Während Neuropeptide zusammen mit anderen Gewebshormonen auf einer übergeordneten regulatorischen Ebene wirken, sind Hexamerine als Speicher- und Verteidigungsproteine ein Endglied dieser hormonellen Regulationskaskade. In der vorliegenden Arbeit wurden zwei Fragestellungen bearbeitet: 1) Im ersten Projekt sollten allatotrope Substanzen im Gehirn der großen Wachsmotte Galleria mellonella durch Screening einer Expressionsbibliothek mit polyklonalen Antiseren identifiziert werden. Dabei wurde das Neuropeptid Corazonin identifiziert. Die vollständige Corazonin-mRNA wurde kloniert und sequenziert. Das Expressionsmuster der Corazonin-mRNA und des Peptids wurde mittels Northern-Analyse und in-situ-Hybridisierung charakterisiert. Corazonin wird in vier Zellpaaren, die zu den lateralen neurosekretorischen Zellen gehören, exprimiert. Die Axone dieser Zellen verlaufen ipsilateral zu den Nervi corpori cardiaci I+II, feine Fasern verzweigen sich in die am Ösophagus angrenzende Hirnregion hinein. Corazonin wird offensichtlich an den Axon- Endigungen in den Corpora cardiaca in die Hämolymphe freigesetzt. Einige feine Fasern enden in den Corpora allata bzw. am Vorderdarm. Der Nachweis, dass Corazonin tatsächlich eine allatotrope Wirkung hat, konnte nicht erbracht werden. 2) Die Protein/Protein-Interaktion zwischen Hexamerinen und dem Hexamerinrezeptor der Schmeißfliege Calliphora vicina wurde durch Two-Hybrid-Experimenten analysiert. Durch Interaktionstest mit trunkierten Proteinfragmenten wurden die Bindungsdomänen beider Proteine kartiert. Als rezeptorbindende Domäne des Arylphorins wurde ein 49 AS großes Peptid in der Domäne-3 des Arylphorin- Monomers identifiziert. Die Ligandenbindungsdomäne des Hexamerinrezeptors wurde in den ersten 24 AS des N-Terminus kartiert. Ausgehend von diesen Ergebnissen wurde ein HTS-Protokoll entwickelt, das zur Identifizierung von Substanzen verwendet werden kann, welche die Bindung dieser beiden Proteine beeinflussen. Eine Two-Hybrid-Bibliothek wurde ausgehend von 7dL-Fettkörper-RNA konstruiert und mit "Hexamerinrezeptor-Ködern" gescreent. Dabei wurden zwei neue Interaktionspartner des Hexamerinrezeptors gefunden und genauer charakterisiert. Der erste identifizierte Interaktionspartner - d-AP-3 - ist Teil eines Adaptin- Komplexes, der als Adapter zwischen membranständigen Rezeptoren und Clathrin oder ähnlichen Proteinen an der rezeptorvermittelten Endozytose beteiligt ist. Die Adaptin-Interaktionsdomäne liegt innerhalb des ABP64-Spaltprodukts des Hexamerinrezeptors. Die Funktion des zweiten Interaktionspartners - AFP - ist unbekannt. AFP wird im anterioren Teil des Fettkörpers und in Hämozyten exprimiert. Die Interaktion zwischen dem Hexamerinrezeptor und AFP ist demnach auf diesen Teil des Fettkörpers beschränkt. Die mit AFP interagierende Domäne des Hexamerinrezeptors liegt innerhalb des P30-Spaltprodukts. N2 - The goal of this project was to develop innovative approaches to identify biologically active substances which interfere with the metamorphosis of holometabolous insects. Hexamerins and neuropeptides clearly have different functions. While neuropeptides are involved in initial regulatory steps hexamerins have important functions as storage and defense proteins during the final steps of the regulatory cascade. Two projects are part of this dissertation: 1) The aim of the first project was the identification of allatotropic substances in the brain of the greater waxmoth Galleria mellonella by means of screening an expression-library with polyclonal antisera. This approach led to the identification the neuropeptide corazonin. The corazonin-mRNA was cloned and sequenced. The expression profile of the mRNA and the peptide was examined with northern-blotting and in-situ-hybridization. Corazonin is produced in four neurosecretory cells localized laterally in each brain hemisphere. Axons of these cells follow the ipsilateral tract to the nervi corpori cardiaci I+II, finer fibers seem to terminate in the brain region adjacent to the oesophagus. Corazonin seems to be released in axon terminals within the corpora cardiaca. Axon endings are even regularly seen in the foregut wall and in the corpora allata. However it could not be established that corazonin in fact is an allatotropic substance. 2) The protein/protein-interaction between hexamerins and the hexamerin-receptor of the blowfly Calliphora vicina was analysed using the yeast-two-hybrid- system. By interaction tests with truncated protein fragments the binding domains of both proteins were mapped. The receptor binding domain of arylphorin was located within a peptide of 49 aa in domain-3 of the arylphorin monomer. The ligand binding domain of the hexamerin-receptor was mapped within the first 24 aa of the N-terminus. Proceeding from this results a protocol for a high-throughput-screening was developed which can be used to identify substances that interfere with the binding of these two proteins. A two-hybrid-library was constructed from 7dL-fat body RNA and screened with a hexamerin-receptor-bait. Two novel interactors of the hexamerin-receptor were identified and characterized within this project. The first identified interactor - d-AP-3 - is part of an adaptin complex which serves as an adapter between membrane-bound receptors and clathrin or related proteins and is part of the receptor-mediated endocytosis process. The adaptin-interacting domain lies within the ABP64 cleavage product of the receptor. The function of the second interactor - AFP - is unknown. AFP is produced specifically in the anterior part of the fat body and in hemocytes. Hence the interaction between the hexamerin-receptor and AFP is limited to this part of the fat body. The AFP-interacting domain is located within the P30 cleavage product of the hexamerin-receptor. KW - Blaue Fleischfliege KW - Hexamerine KW - Rezeptor KW - Arylphorine KW - Wechselwirkung KW - Große Wachsmotte KW - Jugendentwicklung KW - Corazonin KW - Genexpression KW - Biologische Schädlingsbekämpfung KW - Hexamerin KW - Neuropeptid KW - Corazonin KW - Arylphorin AFP KW - hexamerin KW - neuropeptide KW - corazonin KW - arylphorin AFP Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1180084 ER -