TY - THES A1 - Kufner, Andreas T1 - In vitro Untersuchungen zur Biokompatibilität von Magnesiumammoniumphosphat-Zementen T1 - in vitro studies on the biocompatibility of magnesiumammoniumphosphate-cements N2 - Das Ziel dieser Arbeit war es, die grundsätzliche Eignung von verschiedenen Magne-siumammoniumphosphat-Zementen für den eventuellen späteren Einsatz beim Men-schen zu bewerten; dafür wurden diverse in vitro Versuchsreihen zur Prüfung der Biokompatibilität dieser Verbindungen durchgeführt. Als Referenz diente bei diesen Versuchsreihen ein beim Menschen bereits erfolgreich eingesetzter nanokristalliner, kalziumarmer Hydroxylapatit-Zement. Für diese Biokompatibilitätsprüfungen wurde auf den verschiedenen Testoberflä-chen (Mg0,75Ca2,25(PO4)2 –, Mg1,5Ca1,5(PO4)2 –, Mg2,25Ca0,75(PO4)2 –, Mg3(PO4)2 –, Ca3(PO4)2–Zement) eine jeweils definierte Menge an humanen Osteoblasten der Zelllinie MG-63 aufgebracht und diese Zellen wurden danach über einen 14-tägigen Zeitraum kultiviert. Die Biokompatibilitätsüberprüfungen erfolgten mittels bestimmten Zellproliferations- und Zellaktivitätsmessungen; anhand der ermittelten Ergebnisse hinsichtlich Zellzahl und Zellaktivität sollte danach die Eignung dieser neuartigen Magnesiumammoniumphosphat-Zemente zur Verwendung im menschlichen Körper beurteilt werden. Mit Hilfe von elektronenmikroskopischen Aufnahmen wurden die jeweiligen Oberflächenstrukturen der einzelnen Zemente genauer untersucht; außer-dem konnte mit diesen Fotografien das Wachstum und die zelluläre Morphologie von humanen Osteoblasten auf den unterschiedlichen Oberflächen analysiert werden. Bei der Auswertung des Zellwachstums wurden die jeweils höchsten Werte in beiden Versuchsreihen auf dem Hydroxylapatit-Zement gemessen; bei den vier Magnesi-umammoniumphosphat-Zementen waren dagegen weitaus geringere Zellprolifera-tionsvorgänge innerhalb der Versuchsreihen zu beobachten. Auch bei der gesamten mitochondrialen Zellaktivität aller Osteoblasten erreichte der Hydroxylapatit-Zement in beiden Versuchen den maximalen Wert; der Unterschied zu den Werten bei den Magnesiumammoniumphosphat-Zementen war hier allerdings deutlich geringer als bei der Gesamtzellzahl. Vor allem beim Mg3(PO4)2 -Zement konnten in beiden Ver-suchen fast ähnlich hohe Werte beobachtet werden wie beim Hydroxylapatit-Zement. Untersuchte man dagegen die mitochondriale Aktivität der jeweiligen Einzelzelle auf den Oberflächen, unabhängig vom Gesamtwachstum, so konnte für den Hydroxyl-apatit-Zement die niedrigste Aktivität nachgewiesen werden. Die höchste mitochon-driale Einzelzellaktivität hatten in beiden Versuchsreihen die Osteoblasten auf dem Mg3(PO4)2 –Zement; auch die anderen Magnesiumammoniumphosphat-Verbindun-gen konnten trotz des insgesamt geringen Zellwachstums auf diesen Oberflächen re-lativ hohe Werte bei der Einzelzellaktivität erreichen. Insgesamt betrachtet war somit das Zellwachstum auf dem Hydroxylapatit-Zement signifikant stärker ausgebildet als auf allen Magnesiumammoniumphosphat-Verbin-dungen; trotz des im Vergleich geringen Zellwachstums konnte auf den Magnesium-ammoniumphosphat-Zementen aber ein hohes Maß an mitochondrialer Zellaktivität festgestellt werden. Die Auswertung der Oberflächenstruktur der verschiedenen Zemente mittels raster-elektronenmikroskopischer Bilder ergab für den Hydroxylapatit-Zement eine sehr ho-mogene und wenig poröse Oberfläche. Im Gegensatz dazu konnte bei den Magne-siumammoniumphosphat-Zementen (mit Ausnahme des Mg0,75Ca2,25(PO4)2 –Ze-ments) eine sehr raue Oberfläche mit einer starken Porosität nachgewiesen werden. Bei der Analyse der Zellmorphologie der Osteoblasten konnten keine deutlichen Unterschiede auf den verschiedenen Oberflächen beobachtet werden. Es zeigten sich vor allem ähnliche Formen der Zellkörper und auch die Anzahl der Zellen war re-lativ einheitlich; bei den zytoplasmatischen Zellfortsätzen konnten Unterschiede be-züglich ihrer Länge dargestellt werden. Auch die Auswertung der massenspektrometrischen Versuchsreihe ergab für die ver-schiedenen Magnesiumammoniumphosphat-Verbindungen ein sehr einheitliches Bild; beim Vergleich mit der Referenzoberfläche des Hydroxylapatit–Zements zeigte sich jedoch eine deutliche Diskrepanz bezüglich der Freisetzung von den verschie-denen Substanzen. Für die letztendliche Bewertung der Biokompatibilität von Magnesiumammonium-phosphat-Zementen und den eventuellen Einsatz als Knochenersatzmaterial bedarf es allerdings nicht nur zusätzlicher in vitro Versuchsreihen wie in der vorliegender Ar-beit, sondern auch vieler weiterführender Forschungsarbeiten, um die hier erzielten Ergebnisse zu verifizieren. N2 - The aim of this study was to assess the suitability of different magnesiumammoniumphosphate-cements for future use in human body as a bone substitution material. KW - Magnesiumammoniumphosphat-Zement KW - Struvit KW - Knochenersatzmaterial KW - struvite KW - magnesiumammoniumphosphate KW - bone substitution material Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-48985 ER - TY - THES A1 - Wenninger, Florian T1 - Modifikation von Titanoberflächen mittels elektrochemischer Abscheidung von Magnesiumphosphaten N2 - In der vorliegenden Arbeit ist es gelungen, die experimentellen Parameter für eine erfolgreiche elektrochemische Abscheidung sowohl von Struvit (MgNH4PO4 • 6H2O) als auch Newberyit (MgHPO4 • 3H2O) auf durch Sandstrahlen aufgeraute Titanproben zu ermitteln. Welche der beiden Phasen auf den Titanoberflächen abgeschieden wurde, hing dabei hauptsächlich von der jeweiligen Elektrolytzusammensetzung ab. Bei der Elektrodeposition selbst erwiesen sich eine Elektrolyttemperatur von 50 °C und Stromdichten von etwa 79 – 105 mA/cm2 als optimal, um geschlossene Schichten von hinreichender Dicke reproduzierbar herzustellen. Es zeigte sich, dass die für die jeweiligen Abscheidungsprodukte optimierten Parameter (79 mA/cm2 für Struvit und 105,3 mA/cm2 für Newberyit) zu deutlich unterschiedlichen Massenabscheidungen (4,4 mg/cm2 für Struvit und 0,6 mg/cm2 für Newberyit bei einer Beschichtungsdauer von 15 min) führten. Das Monohydrat Dittmarit (MgNH4PO4 • H2O) ließ sich nicht direkt abscheiden, konnte aber durch Dampfsterilisation von zuvor erzeugten Struvitschichten in einem Autoklaven erzeugt werden. Um das Verhalten der Oberflächenmodifikationen in einer in-vivo-Umgebung zu simulieren, wurden die Beschichtungen für eine maximale Dauer von 14 Tagen in Simulated Body Fluid (SBF), Dulbecco's Modified Eagle Medium (DMEM) und in fötalem Kälberserum (FCS) eingelagert. In bestimmten Zeitabständen wurden eingelagerte Proben ihrem Medium entnommen, getrocknet und die Schichten mit Hilfe der Röntgendiffraktometrie und der Rasterelektronen-mikroskopie hinsichtlich ihrer kristallographischen und morphologischen Eigenschaften charakterisiert. Dabei zeigten die drei Magnesiumphosphate jeweils unterschiedliches Degradationsverhalten in den verschiedenen Einlagerungsmedien. Struvit wandelte sich nach 14 Tagen in DMEM teilweise, in FCS größtenteils und in SBF vollständig zu Bobierrit (Mg3(PO4)2 • 8H2O) um. Ein ähnliches Verhalten zeigte sich bei Dittmarit, allerdings kam es hier in allen Medien zur Bildung einer weiteren Phase (Tri-Magnesium-Di-Phosphat-5-Hydrat, Mg3(PO4)2 • 5H2O), in FCS bildete sich zusätzlich noch Di-Magnesiumphosphathydroxid-4-Hydrat (Mg2PO4OH • 4H2O). Die Newberyit-Schichten hingegen zeigten keinerlei Phasenumwandlungen, lösten sich aber in den Einlagerungsversuchen teilweise auf. Diese Ergebnisse zeigen, dass elektrochemisch erzeugte Beschichtungen auf Magnesiumphosphatbasis durchaus vielversprechend im Hinblick auf die funktionelle Modifikation metallischer Implantatoberflächen sind. Neben den literaturbekannten positiven Eigenschaften der Magnesiumphosphate (gute Zytokompatibilität, hohe Löslichkeit und mechanische Festigkeit) ist für zukünftige Forschungen vor allem das in dieser Arbeit untersuchte Degradationsverhalten von Interesse. Die in fast allen untersuchten Kombinationen aus Schichtmodifikation und Einlagerungsmedium auftretenden Phasenumwandlungen weisen auf durch die physiologische Umgebung hervorgerufene Resorptionsprozesse hin, die wiederum in vivo die Osteointegration des Implantats unterstützen könnten. Ein weiterer Aspekt zukünftiger Untersuchungen ist die mögliche Beladung der biokompatiblen Schichten mit bioaktiven Substanzen (antibakterielle oder osteointegrative Wirkstoffe sowie Metallionen zur Unterstützung bzw. Steuerung biologischer Prozesse im implantatnahen Bereich). Hier könnten die unterschiedlichen Degradationsmechanismen der verschiedenen untersuchten Magnesiumphosphat-Modifikationen die Grundlage für kontrollierte und maßgeschneiderte Freisetzungskinetiken liefern. KW - Magnesiumphosphate KW - Titan KW - Galvanische Abscheidung KW - Struvit KW - Degradation KW - elektrochemische Abscheidung KW - electrochemical deposition KW - titanium KW - magnesium phosphate KW - struvite Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85557 ER -