TY - THES A1 - Weber, Daniel T1 - Morphologische und funktionelle MRT-Infarktcharakterisierung und Entwicklung einer diffusionsgewichteten MRT-Methode T1 - Morphological and functional MRI infarct characterization and development of a diffusion-weighted MRI method N2 - Diffusionstensorbildgebung im Vergleich zu anderen Parametermethoden für die Infarktcharakterisierung Ziel dieses Teils der Arbeit war die Klärung der Frage, welches Potential verschiedene MR-Parametersequenzen bei der Charakterisierung eines myokardialen Infarkts sowohl im akuten als auch im chronischen Fall haben. Dazu wurde eine Studie mit akut und chronisch infarzierten Rattenherzen durchgeführt. Untersucht wurden die Parameter T1, T2 und T2* sowie die aus der Diffusionstensorbildgebung berechneten Parameter ADC, FA, cs, cp und cl . Es zeigte sich, dass es kein Analogon zum bei einer cerebralen Ischämie bekannten Mismatch-Konzept gibt. Weder im akuten noch im chronischen war Fall eine ausgewiesene Differenz im diagnostizierten Infarktareal zwischen verschiedenen Sequenzen feststellbar. Alles in allem eignen sich zur detaillierten Charakterisierung der Infarktnarbe am besten eine T2*- oder eine Diffusionstensorsequenz. Die T2*-Sequenz liefert optisch das aufschlussreichere Bild, die aufwendigere Diffusionstensorsequenz dagegen bietet aufgrund der vielfachen Darstellungsmöglichkeiten im Postprocessing ein Mehr an Information und zeigt dazu eine Veränderung der Narbe im Zeitverlauf. Oxygenierungsmessung am Mäuseherz in vivo Die Charakterisierung einer Infarktnarbe kann auch über die Darstellung morphologischer Strukturen hinaus erfolgen. Die Oxygenierung ist ein komplexer Parameter, der funktionelle Auskunft über die Vaskularisierung und Viabilität des Gewebes geben kann. Zugang zu diesem Parameter erhält man über T2*-Messungen, da der Parameter T2* sensitiv auf chemisch gebundenen Sauerstoff reagiert. Hier wurden der Einfluss von reiner Sauerstoffatmung im Gegensatz zu normaler Raumluftatmung auf die Oxygenierung bei gesunden und infarzierten Mäusen untersucht. Die Messungen wurden trotz der Schwierigkeiten, die durch die Bewegung durch Atmung und Herzschlag entstehen, in vivo bei 17,6 Tesla implementiert und durchgeführt. Die Auflösung war ausreichend, um auch nach Infarkt extrem ausgedünnte Myokardwände gut auflösen und charakterisieren zu können. Der Effekt auf das Oxygenierungslevel ist stark unterschiedlich zwischen normalen und infarzierten Herzen, woraus auf eine noch nicht weit fortgeschrittene Revaskularisierung der Narbe eine Woche nach Infarzierung geschlossen werden kann. Die Methode wurde darüber hinaus an einem 7,0 Tesla-Magneten zur Verwendung an Ratten implementiert und auf das im Gegensatz zur Maus veränderte Atmungsverhalten der Ratte angepasst. Zum einen kann dadurch der Einfluss des hohen Magnetfeldes auf die Oxygenierungsmessung untersucht werden, zum anderen ist das Herz als zu untersuchendes Objekt bei der Ratte größer. Diffusionswichtung mittels Hole-Burning Die in dieser Arbeit zur Charakterisierung des Herzens verwendete Diffusionsmethode kann im Grenzfall von kurzen T2-Relaxationszeiten an ihre Grenzen stoßen: Bei den verwendeten starken Magnetfeldern klingt das messbare Signal aufgrund der Relaxationszeit T2 oft sehr schnell ab. Daher wurde eine Methode entwickelt, die einen völlig neuen Ansatz zur diffusionsgewichteten Bildgebung verfolgt, bei dem die Informationen über die Diffusion unabhängig von der limitierenden T2-Zeit gewonnen werden können. Die sog. Hole-Burning-Diffusionssequenz verwendet in einem Vorexperiment lediglich die Longitudinalmagnetisierung zur Diffusionswichtung. Das Signal wird dann mit einer schnellen Auslesesequenz akquiriert. Bei der Präparation werden zunächst auf Subvoxel-Niveau Streifen "gebrannt", d.h. die Magnetisierung wird dort gesättigt. Bis zur nächsten Sättigung ist das Verhalten der Magnetisierung abhängig von der T1-Relaxation in diesem Bereich und vom Diffusionsverhalten. Durch rasches Wiederholen des selektiven Pulszugs wird schließlich eine Gleichgewichtsmagnetisierung erreicht, die von der Diffusionskonstanten D und der T1-Relaxationszeit abhängt. Im Rahmen dieser Arbeit wurden die Abhängigkeiten verschiedener Sequenzparameter untersucht und diese mittels Simulationen optimiert. Außerdem wurde die Sequenz an einem Scanner implementiert und erste Experimente damit durchgeführt. Mit Hilfe von Simulationen konnten dazu Lookup-Tabellen generiert werden, mit denen in bestimmten Bereichen (insbesondere bei nicht zu kurzen T1-Relaxationszeiten) sowohl die Diffusionskonstante D als auch die T1-Relaxationszeit quantifiziert werden konnte. N2 - Diffusion tensor imaging for the characterization of myocardial infarction in comparison to other methods The aim of this part of this work was to evaluate the potential of different MR sequences for the characterization of myocardial infarction in both the acute and chronic case. Therefore a study of acute as well as chronic infarcted rat hearts was performed, and the parameters T1, T2, T2* and the parameters ADC, FA, cs, cp and cl calculated from the diffusion tensor images were investigated. It turned out that there is no equivalent to the ischemia. Neither in the acute nor in the chronic case, a notably difference inside the affected area was detectable between different sequences. All in all, for detailed characterization of the infarct scar a T2* or a diffusion tensor sequence are most suitable. The T2* sequence provides a more informative visual image, whereas the more time-consuming diffusion tensor sequence provides a surplus of information due to the multiple display options in post-processing and shows the remodelling of the scar tissue over time. Oxygen level measurements in mouse hearts in vivo The characterization of an infarct scar can also go beyond the representation of morphological structure. The oxygenation is a complex parameter that can provide functional information of the vascularization and viability of the tissue. Access to this parameter is obtained by T2*-measurements, as the parameter T2* is sensitive to chemically bound oxygen. The influence of pure oxygen breathing in contrast to normal room air breathing on the oxygenation level in healthy and infarcted mice have been explored. Despite the difficulties caused by the movement due to respiration and heartbeat the measurements were implemented and carried out at 17.6 Tesla in vivo. The resolution was sufficient to resolve and investigate extremely thinned heart walls after infarction. The effect on the oxygenation level varies considerably between normal and infarcted hearts; that may be caused by a not yet advanced revascularization of the scar. In addition, the method was implemented to a 7.0 Tesla magnet for use in rats and adapted to the respiration of rats, which is different to the respiration of mice. The first reason was that the influence of the higher magnetic field on the measurement of the oxygenation level could be examined. Second, the heart as the examined object is larger in rats. Diffusion weighting using hole burning The MR diffusion method used in this work for the characterization of myocardial infarctions could be limited by extremely short T2 relaxation times. With the strong magnetic fields used here the measurable signal decays very fast due to the relaxation time T2. Therefore, a method for a completely new approach to diffusion-weighted imaging was developed, where the diffusion weighting can be obainted without being limited by the time constant T2. The so-called hole-burning diffusion sequence uses only the longitudinal magnetization for the diffusion weighting in a preliminary experiment. The signal is then acquired with a fast read-out sequence. During the preparation stripes will be "burned" into the magnetization on a subvoxel level, i.e. the magnetization is saturated there. Until the next saturation pulse the behavior of the magnetization depends first on the T1 relaxation time in this area and second on the diffusion. By rapidly repeating the selective pulse train a steady state magnetization dependend on the diffusion constant D and the T1 relaxation time is reached. In this work the dependencies between different sequence parameters were investigated and optimized using simulations. In addition, the sequence was implemented on a MR scanner and first experiments were carried out. With simulated lookup-tables we were able to quantify both the diffusion coefficient D and the T1 relaxation time in the case of not too short relaxation times T1. KW - Kernspintomografie KW - Infarkt KW - MRI KW - infarct KW - characterization KW - diffusion KW - hole-burning KW - NMR-Tomographie KW - Anisotrope Diffusion KW - Diffusion KW - Spektrales Lochbrennen KW - Herzinfarkt Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71157 ER - TY - THES A1 - Stäb, Daniel T1 - Erweiterung der Anatomischen Abdeckung in der MRT des Herzens T1 - Anatomic Coverage Extension in Cardiac MRI N2 - Die MRT hat sich in den letzten Jahren zu einem wichtigen Instrument in der Diagnostik von Herzerkrankungen entwickelt. Da sie ohne ionisierende Strahlung auskommt, stellt sie vor allem auch eine nichtinvasive Alternative zu den nuklearmedizinischen Verfahren und der Computertomographie dar. Im speziellen ermöglicht die kardiale MRT die ortsaufgelöste Darstellung des Herzens mit einer Vielzahl an Kontrasten. Neben der Morphologie können damit auch zahlreiche Funktionsparameter des Herzens, wie die Ejektionsfraktion des linken Ventrikels, oder die Viabilität und Perfusion des Herzmuskels untersucht werden. Atmung und Herzbewegung stellen allerdings große Anforderungen an die MR-Herzbildgebung. Die beiden Störfaktoren limitieren den Zeitraum, der zur Bildakquisition zur Verfügung steht und erzeugen so Konflikte zwischen räumlicher Auflösung, anatomischer Abdeckung, zeitlicher Auflösung und dem Signal-zu-Rausch-Verhältnis (SNR). Ferner ergibt sich für die meisten eingesetzten Verfahren eine erhöhte Komplexität. Die Bildgebungssequenzen müssen mittels EKG an den Herzrhythmus des Patienten angepasst und die Bildakquisitionen im Atemanhaltezustand durchgeführt werden. In manchen Fällen ist sogar eine Aufspaltung der Messung in mehrere Einzelakquisitionen nötig, was wiederum die Dauer der Untersuchungen verlängert und den Patientenkomfort reduziert. Mit technischen Entwicklungen im Bereich der Gradienten und der Empfangsspulen sowie durch den Einsatz dedizierter Bildgebungstechniken konnten in den letzten Jahren signifikante Verbesserungen erzielt und der Stellenwert der MR-Bildgebung in der Herzdiagnostik erhöht werden. Von großer Bedeutung sind dabei auch Beschleunigungsverfahren wie die Parallele Bildgebung, die eine deutliche Verkürzung der Datenakquisition ermöglichen und so den Einfluss von Atmung und Herzbewegung wirksam reduzieren. Die Beschleunigung wird dabei grundsätzlich durch eine unvollständige Datenakquisition bzw. Unterabtastung des k-Raums erzielt, welche im Zuge der Bildrekonstruktion durch Ausnutzen zusätzlich vorhandener Informationen kompensiert wird. Bei der Parallelen Bildgebung ersetzen beispielsweise mehrere um das Objekt herum angeordnete Empfangsspulen die zum Teil unvollständig durchgeführte Gradientenbasierte Ortskodierung. Die Beschleunigungsverfahren sind allerdings wegen der verringerten Datenaufnahme auch immer mit einer Reduktion des SNR verbunden. Eine alternative Strategie zur Beschleunigung der 2D-Bildgebung mit mehreren Schichten stellt die simultane Multischichtbildgebung mit Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration(MS-CAIPIRINHA) dar. Anders als bei der konventionellen Parallelen Bildgebung wird die Beschleunigung hier nicht durch eine reduzierte Datenaufnahme erzielt. Vielmehr werden Multiband-RF-Pulse eingesetzt, um die Spins in mehreren Schichten gleichzeitig anzuregen. Durch Anwenden schichtspezifischer RF-Phasenzyklen wird die Phase der Spins individuell in jeder Schicht moduliert, wodurch sich eine gegenseitige Verschiebung der Schichten im FOV ergibt. Die Verschiebung erleichtert die Separation der gleichzeitig angeregten Schichten mit Verfahren der Parallelen Bildgebung. Sie erlaubt außerdem eine Minimierung der bei der Rekonstruktion entstehenden Rauschverstärkung. Die Multischichtbildgebungstechnik zeichnet sich gegenüber der konventionellen Parallelen Bildgebung durch ein wesentlich höheres SNR und durch eine Bildrekonstruktion mit geringeren Rekonstruktionsfehlern aus. In dieser Dissertation wurden verschiedene Strategien zur Anwendung von MS-CAIPIRINHA in der MRT des Herzens präsentiert sowie ihre Vorund Nachteile gegenübergestellt. Im Allgemeinen ermöglichen die vorgestellten Konzepte eine hinsichtlich des SNR sehr effiziente Erweiterung der anatomischen Abdeckung. Unter anderem wurde eine Möglichkeit vorgestellt, mit der es uneingeschränkt gelingt, MS-CAIPIRINHA in der Bildgebung mit bSSFP-Sequenzen anzuwenden. Die Steady-State-Sequenz wird aufgrund ihres hohen intrinsischen SNR und vorteilhaften Kontrastverhaltens sehr häufig in der MRT des Herzens bei 1,5T eingesetzt. Wie auch die simultane Multischichtbildgebung erfordert sie zum Halten der Magnetisierung im stationären Zustand die Applikation eines dedizierten RF-Phasenzyklus während der Datenakquisition. Der Phasenzyklus der Sequenz ist allerdings nicht ohne Weiteres mit den Phasenzyklen der Multischichttechnik kompatibel, so dass eine Verknüpfung der beiden Verfahren bisher nur durch Aufspalten der Bildakquisition in mehrere Teilmessungen gelang. Mit dem in Kapitel 5 vorgestellten Konzept ist diese zumeist impraktikable Segmentierung nicht mehr erforderlich. Generalisierte RF-Phasenzyklen, die sowohl die Anforderungen der Sequenz, als auch die der Multischichtbildgebung erfüllen, ermöglichen eine uneingeschränkte Anwendung der Multischichttechnik in der Bildgebung mit bSSFP oder vergleichbaren Steady-State-Sequenzen. Die Multischichttechnik ist damit auch bei Untersuchungen in Echtzeit oder mit Magnetisierungspräparation – Verfahren, die unter anderem in der MR-Herzdiagnostik Verwendung finden – einsetzbar. Anhand von Echtzeit-, Cine- und First-Pass-Herzperfusionsuntersuchungen am menschlichen Herzen konnte die Anwendbarkeit des Konzepts erfolgreich demonstriert werden. Durch die Akquisition zweier Schichten in der Zeit, die normalerweise zur Bildgebung einer einzelnen Schicht benötigt wird, gelang eine Verdoppelung der anatomischen Abdeckung bei unverändert hoher Bildqualität. Bei den Herzperfusionsuntersuchungen konnten je RR-Intervall sechs Schichten akquiriert werden. Bei Echtzeit- und Cine-Messungen erlaubt das Konzept eine signifikante Reduktion der Anzahl der Atemanhaltezustände und dementsprechend eine wirksame Verkürzung der Patientenuntersuchung und eine Verbesserung des Patientenkomforts. In Kapitel 6 wurde eine effiziente Strategie zur Anwendung der simultanen Multischichtbildgebung in der First-Pass-Herzperfusionsbildgebung bei 3T vorgestellt. Es wurde gezeigt, dass durch den Einsatz von MS-CAIPIRINHA mit Beschleunigungsfaktoren, die größer sind als die Anzahl der simultan angeregten Schichten, neben der anatomischen Abdeckung auch die räumliche Auflösung innerhalb der Bildgebungsschicht erhöht werden kann. Beide Verbesserungen sind für die MR-gestützte Diagnostik der Koronaren Herzerkrankung von Bedeutung. Während mit einer hohen räumlichen Auflösung subendokardiale und transmurale Infarktareale unterschieden werden können, erleichtert eine hohe anatomische Abdeckung die genaue Eingrenzung hypoperfundierter Bereiche. Das grundsätzliche Prinzip der vorgestellten Strategie besteht in der Kombination zweier unterschiedlicher Beschleunigungsansätze: Zur Verbesserung der anatomischen Abdeckung kommt die simultane Multischichtbildgebung zum Einsatz. Zusätzlich zur gleichzeitigen Anregung mehrerer Schichten wird der k-Raum regelmäßig unterabgetastet. Die dabei erzielte Beschleunigung wird zur Verbesserung der räumlichen Auflösung eingesetzt. Die Bildrekonstruktion erfolgt mit Verfahren der Parallelen Bildgebung. Der Vorteil des Konzepts liegt insbesondere im vollständigen Erhalt der Datenakquisitionszeit gegenüber einer unbeschleunigten Messung mit Standardabdeckung und -auflösung. Anders als bei konventionellen Beschleunigungsverfahren wirken sich lediglich die Verkleinerung der Voxelgröße sowie die Rauschverstärkung der Bildrekonstruktion SNR-reduzierend aus. Die Rauschverstärkung wird dabei, durch die gegenseitige Verschiebung der simultan angeregten Schichten im FOV, so gering wie möglich gehalten. Die Anwendbarkeit des Konzepts konnte anhand von Simulationen sowie Untersuchungen an Probanden und Herzinfarktpatienten erfolgreich demonstriert werden. Simultanes Anregen zweier Schichten und 2,5-faches Unterabtasten des k-Raums ermöglichte die Durchführung von Untersuchungen mit einer anatomischen Abdeckung von sechs bis acht Schichten je RR-Intervall und einer räumlichen Auflösung von 2,0×2,0×8,0mm3. Es konnte gezeigt werden, dass die angewandte GRAPPA-Rekonstruktion, trotz der effektiv fünffachen Beschleunigung, robust und im Wesentlichen mit geringer Rauschverstärkung durchführbar ist. Bildqualität und SNR waren für eine sektorweise Absolutquantifizierung der Myokardperfusion ausreichend, während die hohe räumliche Auflösung die Abgrenzung kleiner subendokardialer Perfusionsdefizite ermöglichte. Aufgrund seiner großen Flexibilität und recht einfachen Implementierbarkeit ist das Beschleunigungskonzept vielversprechend hinsichtlich einer Anwendung in der klinischen Routine. Die diesbezügliche Tauglichkeit ist allerdings in weiterführenden Patientenstudien noch zu evaluieren. Alternativ zu diesem Konzept wurde in Kapitel 7 noch eine weitere, ebenfalls auf MS-CAIPIRINHA basierende Strategie für die First-Pass-Herzperfusionsbildgebung bei 3T mit großer anatomischer Abdeckung und hoher räumlicher Auflösung vorgestellt. Wie zuvor bestand die Grundidee des Konzepts darin, MS-CAIPIRINHA mit Beschleunigungsfaktoren anzuwenden, welche größer sind als die Anzahl der simultan angeregten Schichten und die Vergrößerung der anatomischen Abdeckung durch simultanes Anregen mehrerer Schichten zu realisieren. Um allerdings die bei der Bildrekonstruktion und Schichtseparation entstehende Rauschverstärkung zu minimieren, wurde zur Verbesserung der räumlichen Auflösung innerhalb der Schicht das nichtlineare Beschleunigungsverfahren Compressed Sensing zum Einsatz gebracht. Die erst in den letzten Jahren entwickelte Technik ermöglicht die exakte Rekonstruktion zufällig unterabgetasteter Daten, sofern bekannt ist, dass sich das rekonstruierte Bild in eine wohldefinierte sparse Darstellung überführen lässt. Neben der Erreichbarkeit hoher Beschleunigungsfaktoren bietet Compressed Sensing den Vorteil einer Bildrekonstruktion ohne signifikante Rauscherhöhung. Zur Einbindung des Verfahrens in das Multischichtbildgebungskonzept erfolgt die für die Verbesserung der Auflösung nötige Unterabtastung des k-Raums, zufällig und inkohärent. Zur Bildrekonstruktion sind zwei Teilschritte erforderlich. Im ersten Teilschritt werden die durch die zufällige Unterabtastung entstandenen inkohärenten Artefakte mit Compressed Sensing entfernt, im zweiten die gleichzeitig angeregten Schichten mit Verfahren der Parallelen MRT separiert. Es konnte gezeigt werden, dass die Kombination aus Compressed Sensing und MS-CAIPIRINHA eine Reduktion der inhomogenen Rauschverstärkung ermöglicht und zur Durchführung von qualitativen First-Pass-Herzperfusionsuntersuchungen mit einer Abdeckung von sechs bis acht Schichten je RR-Intervall sowie einer räumlichen Auflösung von 2,0 × 2,0 × 8,0mm3 geeignet ist. Des Weiteren konnte gezeigt werden, dass das angewandte Multischicht-Bildgebungskonzept einer Anwendung des entsprechenden Compressed-Sensing-Konzepts ohne simultane Multischichtanregung überlegen ist. Es stellte sich allerdings auch heraus, dass die rekonstruierten Bilder mit systematischen Fehlern behaftet sind, zu welchen auch ein signifikanter rekonstruktionsbedingter Verlust an zeitlicher Auflösung zählt. Dieser kann zu einer Verzerrung quantitativ bestimmter Perfusionswerte führen und verhindert so robuste quantitative Messungen der Myokardperfusion. Es ist außerdem davon auszugehen, dass auch abrupte Signalveränderungen, die bei Arrhythmien oder Bewegung auftreten, nur sehr ungenau rekonstruiert werden können. Die Systematischen Rekonstruktionsfehler konnten anhand zweier Verfahren, einer Monte-Carlo-Simulation sowie einer Analyse der lokalen Punktantworten präzise Untersucht werden. Die beiden Analysemethoden ermöglichten einerseits die genaue Bestimmung systematischer und statistischer Abweichungen der Signalamplitude und andererseits die Quantifizierung rekonstruktionsbedingter zeitlicher und räumlicher Auflösungsverluste. Dabei konnte ein Mangel an Sparsität als grundlegende Ursache der Rekonstruktionsfehler ermittelt werden. Die bei der Analyse eingesetzten Verfahren erleichtern das Verständnis von Compressed Sensing und können beispielsweise bei der Entwicklung nichtlinearer Beschleunigungskonzepte zur Bildqualitätsanalyse eingesetzt werden. N2 - In the recent years Magnetic Resonance Imaging (MRI) has become a powerful clinical tool for the diagnosis of cardiovascular diseases. In fact, getting along without ionizing radiation, the technique represents a noninvasive alternative to computed tomography or nuclear medicine treatment. In cardiac MRI, the heart can be imaged with a large variety of contrasts, which helps assessing not only morphologic but also functional information like the ejection fraction of the left ventricle or the viability and perfusion of the myocardium. However, having to deal with a moving organ, cardiac MRI is very challenging. In particular, breathing and the motion of the heart restrict the time available for imaging and a trade-off has to be found between signal-to-noise ratio (SNR), spatial resolution, anatomic coverage and temporal resolution. In addition, the motion enforces complexity. In-vivo examinations have to be performed in breath hold and ECG triggering has to be applied in order to adopt the sequences to the cardiac cycle. In several cases, measurements have to be split into multiple acquisitions which significantly prolongs the examination and reduces the patient comfort. Nevertheless, recent advances in gradient and receiver coil design in addition to the development of dedicated sequences for imaging led to significant improvements and helped strengthening the role of MRI in the diagnosis of cardiovascular diseases. A major part of the improvements has been achieved by employing acceleration techniques like Parallel Imaging. By substantially shortening the data acquisition they allow reducing the impact of motion onto the examinations. The acceleration is basically achieved by undersampling k-space, i.e. performing the data acquisition incompletely. The lack of data is compensated by making use of additional information inherently available. In Parallel Imaging for example, multiple receiver coils positioned around the subject to be investigated are utilized to partially replace the spatial encoding conventionally performed by gradient switching. However, employing these acceleration strategies always comes along with a reduction of the SNR since the time utilized for data sampling is shortened. For accelerating 2D measurements of multiple slices, an alternative approach is given by the simultaneous multi-slice imaging technique Multi-Slice Controlled Aliasing In Parallel Imaging Results In Higher Acceleration (MS-CAIPIRINHA). Unlike conventional Parallel Imaging, which requires shortening of the data acquisition, the technique provides acceleration by exciting the spins in multiple slices at the same time using multi-band radio frequency (rf) pulses. The slices are provided with specific rf phase cycles that allow shifting the simultaneously excited slices with respect to each other in the FOV. The shift facilitates the separation of the slices using Parallel Imaging reconstruction techniques. Moreover, it allows minimizing the inhomogeneous noise amplification coming along with the reconstruction. With respect to conventional Parallel Imaging, MS-CAIPIRINHA benefits from considerably higher SNR and an image reconstruction with less reconstruction errors. In this thesis several strategies for employing the simultaneous multi-slice imaging technique in the field of cardiac MRI have been presented together with their advantages and disadvantages. In general, the individual concepts allow for increasing the anatomic coverage in a very SNR efficient manner. First of all, a concept was presented that allows applying MS-CAIPIRINHA to bSSFP sequences. Providing an advantageous image contrast and intrinsically high SNR, the steady-state sequence is often utilized for cardiac MR examinations at field strengths of 1,5T. Like the simultaneous multi-slice imaging technique, it requires the strict application of a dedicated rf phase cycle to keep the magnetization in steady state. However, this rf phase cycle is incompatible to the rf phase cycles usually employed in MS-CAIPIRINHA. Thus, the combination of the two methods is impaired unless the imaging procedure is split into several measurements. This rather impractical segmentation is not required utilizing the concept proposed in chapter 5. By employing generalized rf phase cycles that match the requirements of the simultaneous multi-slice imaging technique while simultaneously fulfilling the steady state condition of the sequence, MS-CAIPIRINHA can be employed unrestrictedly to bSSFP or similar steady state sequences. The simultaneous multi-slice imaging technique is thus also applicable to magnetization prepared and real-time imaging modalities. Both types of examinations are frequently utilized in cardiac MRI. The applicability of the concept was successfully demonstrated for real-time cine, segmented cine and myocardial first-pass perfusion imaging. By scanning two slices in the time conventionally required for the acquisition of one single slice, the anatomic coverage could be doubled while maintaining the image quality almost completely. The myocardial first-pass perfusion examinations for example could be performed with a coverage of six slices every RR-interval. In real-time and cine imaging, the concept allows significantly reducing the number of breath holds that have to be performed. Thus, the examination is considerably shortened and the patient comfort ameliorated. In chapter 6, an efficient strategy for applying MS-CAIPIRINHA to contrast enhanced myocardial first-pass perfusion imaging at 3T was presented. It could be shown that by employing the simultaneous multi-slice imaging technique with an acceleration factor higher than the number of simultaneously excited slices, not only the anatomic coverage but also the spatial resolution can be increased. Both improvements are of importance for the MRI based diagnosis of coronary artery disease. While a high spatial resolution allows distinguishing between transmural and subendocardial hypoperfused regions, a large anatomic coverage facilitates their exact localization. The proposed technique is based on the combination of two different acceleration approaches: For increasing the anatomic coverage the simultaneous multi-slice imaging technique is employed. In addition to exciting multiple slices at once, k-space is regularly undersampled. This supplemental acceleration is utilized to increase the spatial resolution. Image calculation and slice separation is performed using conventional Parallel Imaging reconstruction techniques. In particular, the concept benefits from conserving the image acquisition time with respect to a non-accelerated examination with standard coverage and resolution. In contrast to conventional acceleration techniques, where significantly higher undersampling has to be performed, only the voxel size and the inhomogeneous noise amplification contribute to the SNR reduction. Moreover, the noise amplification is minimized by shifting the simultaneously excited slices with respect to each other in the FOV. The applicability of the concept was demonstrated on volunteers and patients. By exciting two slices at the same time and additionally undersampling k-space by a factor of 2.5, an anatomic coverage of six to eight slices every RR-interval and a spatial resolution of 2,0×2,0×8 0mm3 were achieved. The applied GRAPPA reconstruction algorithm was shown to allow for a robust image reconstruction with basically low noise amplification. The spatial resolution facilitated the differentiation between subendocardial and transmural hypoperfused areas and the image quality as well as the SNR were sufficiently high for a sectorwise absolute quantitative estimation of the myocardial blood flow. Regarding the high flexibility and simple applicability in addition to the robustness and speed of the image reconstruction, the concept is a promising candidate for clinical perfusion studies. However, further patient studies are required to prove the applicability of the concept in clinical routine. As an alternative to this concept, in chapter 7, a different acquisition strategy for myocardial first-pass perfusion imaging with extended coverage and high spatial resolution based on MS-CAIPIRINHA was presented. As before, the underlying idea was to apply the multi-slice imaging technique with acceleration factors higher than the number of slices excited at the same time and to achieve the anatomic coverage extension by means of simultaneous multislice excitation. Nevertheless, in order to minimize the inhomogeneous noise amplification coming along with the image reconstruction, the nonlinear acceleration method Compressed Sensing was employed for increasing the spatial resolution within the imaging plane. This recently developed acceleration technique allows exactly reconstructing MR images from randomly undersampled data as far as the reconstructed image can be sparsified by applying a well-defined transformation. The technique allows for high acceleration factors and benefits from an image reconstruction without significant noise amplification. In order to apply Compressed Sensing to the multi-slice imaging concept, the undersampling for resolution improvement is performed randomly and the image reconstruction is carried out in two separate steps. First, Compressed Sensing is applied in order to remove the incoherent artifacts introduced by random undersampling. Second, the slices are separated by applying conventional Parallel Imaging reconstruction techniques. It could be shown that combining MS-CAIPIRINHA with Compressed Sensing allows reducing the noise amplification and facilitates myocardial first-pass perfusion imaging with an anatomic coverage of six to eight slices every heartbeat and a spatial resolution of 2.0×2.0×8.0mm3. Moreover, it could be shown that the technique is superior to employing the Compressed Sensing concept without simultaneous multi-slice excitation. However, the concept also comes along with an impairment of image quality by systematic reconstruction errors. Amongst the latter for example there is a loss of temporal resolution, which might induce significant errors in a quantitative perfusion analysis. Robust quantitative measurements of the myocardial blood flow are thus not feasible so far. In presence of arrhythmia or motion, significant reconstruction errors, having a major impact onto the quality and the temporal fidelity of the measurement are expected. The systematic reconstruction errors could be precisely analyzed by employing a simple Monte Carlo simulation and a dedicated local point spread function analysis. The two specific tools were utilized to reveal the systematic and statistical deviations of the signal amplitude as well as the spatiotemporal resolution losses. A lack of sparsity could thereby be identified as the basic error cause. In general, the evaluation tools provide useful information for understanding the nonlinear character of Compressed Sensing and may be utilized for image quality analysis in the development of nonlinear reconstruction concepts. KW - Kernspintomographie KW - Herz KW - MRT KW - Herz KW - Parallele Bildgebung KW - CAIPIRINHA KW - Compressed Sensing KW - MRI KW - Cardiac KW - Parallel Imaging KW - Compressed Sensing KW - CAIPIRINHA KW - Biophysik Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-93405 ER - TY - THES A1 - Kharrazian Charandabi, Reza T1 - Methoden der 23Na-NMR-Bildgebung zur Diagnose am ischämischen und infarzierten Herzen T1 - 23Na MRI methods for the diagnosis of ischemia and myocardial infarction N2 - Die Arbeit befaßt sich mit Methoden der 23Na-NMR-Bildgebung zur Diagnose am ischämischen und infarzierten Herzmuskel. Der erste Teil beschreibt eine Methode zur lokalisierten Messung des intra- und extrazellulären Natriumgehaltes und T1. Die Methode kam in einer Studie zum Einsatz, in der intra- und extrazellulärer Natriumgehalt sowie die T1-Werte an den Tagen 1, 3 und 21 nach Infarkt gemessen wurden.Im zweiten Teil der Arbeit wird die Dynamik des 23Na bei freier Präzession im stationären Zustand (SSFP) sowohl in numerischen Simulationen als auch experimentell untersucht. N2 - Purpose of this work was the study and development of 23Na-NMR imaging methods for the diagnosis of ischemia and myocardial infarction. In a first part, a method to measure on a local basis the intra- and extracellular sodium contents and T1 values is described. The method has been applied to measure the intra- and extracellular sodium contents and T1 values in myocardial infarction on day 1, 3 and 21 post-infarction. In a second part, the dynamics of 23Na during completely balanced steady-state free precession have been studied in numerical simulations and experiments. KW - Herzinfarkt KW - NMR-Bildgebung KW - Herz KW - Ischämie KW - 23Na KW - Natrium KW - MRT KW - intrazellulär KW - steady-state free precession KW - 23Na KW - sodium KW - MRI KW - inctracellular KW - steady-state free precession Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-21518 ER - TY - THES A1 - Hölscher, Uvo Christoph T1 - Relaxations-Dispersions-Bildgebung in der Magnetresonanztomographie T1 - Relaxation Dispersion Magnetic Resonance Imaging N2 - Das Ziel dieser Promotion ist der Aufbau eines dreMR Setups für einen klinischen 1,5T Scanner, das die Relaxations-Dispersions-Bildgebung ermöglicht, und die anschließende Ergründung von möglichst vielen Anwendungsfeldern von dreMR. Zu der Aufgabe gehört die Bereitstellung der zugrunde liegenden Theorie, der Bau des experimentellen Setups (Offset-Spule und Stromversorgung) sowie die Programmierung der nötigen Software. Mit dem gebauten Setup konnten zwei große Anwendungsfelder — dreMR Messungen mit und ohne Kontrastmitteln — untersucht werden. N2 - The goal of this dissertation is the design of a dreMR setup for a clinical 1.5T whole body scanner and the subsequent exploration of possible application fields for the dreMR method. This task includes the investigation of the underlying theory, the design and construction of the dreMR setup (offset-coil and current driver) and the preparation of required software. Two major application fields have been demonstrated: dreMR with and without contrast agents. KW - Kernspintomografie KW - MRT KW - Dispersion KW - dreMR KW - MRI KW - dreMR KW - NMR-Tomographie KW - Kontrastmittel KW - Bilderzeugung Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-79554 ER - TY - THES A1 - Haddad, Daniel T1 - Hochfeld 1H-NMR-Mikroskopie zur biophysikalischen Grundlagenforschung T1 - High Field 1H-NMR-Microscopy for Basic Biophysical Research N2 - Dank der mit modernen NMR-Spektrometern (Kernspintomographen) routinemäßig realisierbaren isotropen räumlichen Auflösungen von wenigen Mikrometern, ergeben sich für die 1H NMR-Mikroskopie zahlreiche neue Anwendungsgebiete. Allerdings sind die Möglichkeiten und Grenzen der NMR-Mikroskopie bezüglich ihrer praktischen Anwendbarkeit bisher nur wenig untersucht worden. Die vorliegende Arbeit ist im Bereich der biophysikalischen Grundlagenforschung angesiedelt und soll die praktische Anwendbarkeit der NMR-Mikroskopie auf neuen medizinischen und biologischen Anwendungsgebieten anhand von ausgewählten Beispielen aus diesen Bereichen demonstrieren. Die einzelnen Projekte besitzen deswegen immer auch den Charakter von Machbarkeitsstudien, die aufzeigen sollen, welche Möglichkeiten und Vorteile die NMR-Mikroskopie im Vergleich zu etablierten Untersuchungsmethoden bietet. Im Detail wurden unterschiedliche lebende und fixierte biologische Proben mittels NMR-Mikroskopie zerstörungsfrei und räumlich hochaufgelöst dargestellt. Dabei variierte die spezielle Zielsetzung von der Visualisierung der Invasion eines Tumorsphäroiden in ein Zellaggregat anhand von T2-Parameterkarten (Zeitkonstante der Spin-Spin-Relaxation) über die dreidimensionale Darstellung des Gehirns der Honigbiene in der intakten Kopfkapsel bis hin zur nicht-invassiven Abbildung der Anatomie prenataler Delphine. Für alle durchgeführten Projekte war der nicht-invasive Charakter der NMR-Experimente von entscheidender Bedeutung. Die zu beobachtende Tumorinvasion durfte nicht durch die Messung beeinflusst werden, das Bienengehirn sollte möglichst naturgetreu abgebildet werden, und die untersuchten Delphine sind seltene Museumsstücke, die nicht zerstört werden durften. Die verschiedenen Proben wurden mit der jeweils bestmöglichen räumlichen Auflösung visualisiert, die sich entweder durch das minimal nötige Signal-zu-Rausch-Verhältnis (SNR) oder durch die zur Verfügung stehende Messzeit ergab. Um einzelne feine Strukturen in den Bildern auflösen zu können, mussten sowohl das SNR, als auch das Kontrast-zu-Rausch-Verhältnis optimiert werden. Die Messungen wurden an Hochfeld-NMR-Spektrometern bei 500 und 750 MHz durchgeführt, um das für die hohe Auflösung notwendige SNR zu gewährleisten. Mit den Experimenten konnten zahlreiche Fragen bezüglich mikroskopischer Details der verschiedenen untersuchten Proben nicht-invasiv beantworten werden. Gleichzeitig führten sie zu neuen interessanten Fragestellungen bezüglich der NMR-Mikroskopie an fixierten Proben. Darüber hinaus konnte die praktische Anwendbarkeit der NMR-Mikroskopie als Alternative bzw. Ergänzung zu herkömmlichen Untersuchungsmethoden wie der konfokalen Lasermikroskopie bei der Visualisierung des Bienengehirns und der konventionellen Histologie bei der Untersuchung der Anatomie der prenatalen Delphine demonstriert werden. Durch die Untersuchung der speziellen Vorteile und der Grenzen der Anwendung der NMR-Mikroskopie gegenüber den herkömmlichen Untersuchungsmethoden konnte konkret der praktische Nutzen ihres Einsatzes aufgezeigt und Ergebnisse erzielt werden, die sonst nicht erzielbar wären. Gerade der Einsatz der NMR-Mikroskopie in Form der NMR-Histologie stellt einen vielversprechenden Weg zur Etablierung der NMR-Mikroskopie als Routineuntersuchungsmethode dar. Als ebenso erfolgreich hat sich die Anwendung der NMR-Mikroskopie als Untersuchungsmethode bei der Beobachtung der Tumorinvasion erwiesen, so dass sie auch in der medizinischen in-vitro Forschung und Therapiesimulation als sinnvolle Alternative zu den vorhandenen Methoden angesehen werden kann. Anhand der ausgewählten Anwendungsbeispiele ist es in dieser Arbeit somit gelungen, neue, konkrete Einsatzmöglichkeiten für die NMR-Mikroskopie zu eröffnen und ihre praktische Anwendbarkeit als Untersuchungsmethode für Fragestellungen im Bereich der medizinischen in-vitro Forschung und verschiedener neuro- und entwicklungsbiologischer Bereiche zu demonstrieren. N2 - With modern MR-spectrometers it is possible to achieve isotropic spatial resolutions in the range of only a few microns. Thus, several new fields of application for 1H-MR-Microscopy are being developed. Still, the practical possibilities and limitations of this technique have only been determined rarely. This work has a biophysical background and uses different examples to demonstrate the practical applicability of NMR-Microscopy in the medical and biological sector. Therefore, the different projects are feasibility studies which are used to compare the possibilities and advantages of NMR-Microscopy with other, established examination techniques. In detail, using MR-Microscopy, different living and fixed biological samples have been visualized non-invasively with high spatial resolution. The specific purpose of the studies ranged from the visualization of the invasion of tumor-spheroids into cell aggregates using T2 parameter maps (time constant of the spin-spin relaxation) to the three-dimensional display of the honey bee brain in the intact head capsule and the non-invasive visualization of the anatomy of prenatal dolphins. For all these projects, the non-invasive character of MR-experiments was of utmost importance. The tumor invasion was not to be disturbed by the measurements, the bee brain should be visualized as close to its true natural shape as possible and the examined dolphins represent rare museum specimens which should not be destroyed. The different samples were all imaged with the best possible spatial resolution which was either limited by the necessary signal-to-noise ratio (SNR) or the available scan time. In order to resolve single details and fine structures in the images, it was necessary to optimize the SNR as well as the contrast-to-noise ratio. To guarantee the necessary SNR, the measurements were performed on high field MR-spectrometers with resonance frequencies of 500 and 750 MHz. Numerous questions about microscopic details of the examined samples could be answered non-invasively with the experiments performed. At the same time, the experiments led to new interesting questions about MR-Microscopy on fixed samples. Furthermore, the practical applicability of MR-Microscopy as an alternative or a supplement to conventional examination methods could be demonstrated. Here, these methods were confocal laser microscopy in the case of the honey bee brain and conventional histology in the case of the prenatal dolphins. By investigating the specific advantages and limitations of MR-Microscopy in these cases, it was possible to demonstrate the practical value of its application and to obtain results which would otherwise have been impossible. Especially the use of MR-Microscopy as MR-Histology is a promising application which will help to establish MR-Microscopy as a routine examination method. Since the tumor invasion process could also be observed very successfully using MR-Microscopy, this technique can as well be considered as a valuable tool for medical in-vitro research and therapy simulation and thus an alternative to existing methods. In summary, with the examples chosen in this work, it was possible to find new applications for MR-Microscopy and to demonstrate the practical applicability of this method in the fields of medical in-vitro research as well as neurological and developmental biology. KW - NMR-Spektroskopie KW - NMR-Bildgebung KW - Hochauflösendes Verfahren KW - NMR KW - Magnetresonanztomographie KW - Kernspintomographie KW - Mikroskopie KW - Bildgebung KW - MRI KW - magnetic resonance KW - imaging KW - microscopy Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12449 ER - TY - THES A1 - Grodzki, David Manuel T1 - Entwicklung von neuen Sequenzen mit ultrakurzen Echozeiten für die klinische Magnetresonanzbildgebung T1 - Development of New Sequences with Ultrashort Echo Times for Clinical Magnetic Resonance Imaging N2 - Stoffe mit schnell zerfallendem Magnetresonanz (MR)-Signal sind mit herkömmlichen MR- Sequenzen nicht darstellbar. Solche Stoffe haben meist starke Bindungen, wie im menschlichen Körper beispielsweise Sehnen, Bänder, Knochen oder Zähne. In den letzten Dekaden wurden spezielle Sequenzen mit ultrakurzer Echozeit entwickelt, die Signale von diesen Stoffen messen können. Messungen mit ultrakurzen Echozeiten eröffnen der Kernspintomographie neue Anwendungsgebiete. In dieser Doktorarbeit werden die in der Literatur bekannten Methoden zur Messung mit ultrakurzen Echozeiten untersucht und evaluiert. Es werden zwei neue, in dieser Arbeit entwickelte Ansätze vorgestellt, die es zum Ziel haben, bestehende Probleme der vorhandenen Methoden bei robuster Bildqualität zu lösen, ohne auf Hardwareänderungen am Kernspintomographen angewiesen zu sein. Die ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) Sequenz ist eine Single-Point-Sequenz, die im Vergleich zu den bekannten Single-Point-Sequenzen eine stark reduzierte Echozeit ermöglicht. Es wird gezeigt, dass dadurch ein deutlich besseres Signalzu-Rausch-Verhältnis (SNR) von Stoffen mit schnell zerfallendem Signal erreicht wird. Das Problem der sehr langen Messzeit bei Single-Point-Verfahren wird mit der ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) Sequenz gelöst. Bei diesem Ansatz wird der k-Raum-Außenbereich radial und das k-Raum-Zentrum single-point-artig abgetastet. Durch die Kombination beider Akquisitionsstrategien ist eine schnelle und robuste Bildgebung mit ultrakurzer Echozeit und ohne Hardwareänderungen möglich. Wie bei anderen Ansätzen sind bei der PETRA-Sequenz die Bildgebungsgradienten zum Anregungszeitpunkt bereites angeschaltet. Es wird untersucht, welchen Einfluss ungewollte Schichtselektionen auf die Bildgebung haben können und ein Korrekturalgorithmus entwickelt, mit dem sich dadurch entstehende Artefakte im Bild beheben lassen. Die Limitationen des Korrekturalgorithmus sowie mögliche Artefakte der PETRA-Sequenz werden untersucht und diskutiert. Erste Anwendungsbeispiele der PETRA-Sequenz bei verschiedenen Feldstärken und Applikationen werden demonstriert. Wie bei anderen Sequenzen mit ultrakurzen Echozeiten sind die Gradientenaktivitäten bei der PETRA- und GOSPEL-Sequenz gering, wodurch die Messung sehr leise sein kann. Lautstärkemessungen zeigen, dass bei Messungen mit der PETRA-Sequenz der Geräuschpegel um nur ein bis fünf dB(A) im Vergleich zum Hintergrundgeräuschpegel steigt. Es wird demonstriert, dass sich dadurch neue Anwendungsgebiete eröffnen könnten. Vergleichsmessungen zwischen einer T1-gewichteten PETRA- und einer MPRAGE-Messung weisen Bilder auf, die in Kontrast, Auflösung, SNR und Messzeit vergleichbar sind. Mit den in dieser Arbeit entwickelten Methoden konnten Probleme bestehender Ansätze gelöst und offene Fragen beantwortet werden. Die Ergebnisse können helfen, Applikationen von Sequenzen mit ultrakurzen Echozeiten in der klinischen Routine weiter zu etablieren. N2 - Tissues with fast decaying magnetic resonance (MR) signal are not measureable with conventional MR sequences. These tissues mostly have strong covalent bondings, like in the human body tendons, ligaments, bones and teeth. In the last decade, special MR sequences with ultrashort echo times have been developed that are able to depict signal from those tissues. Ultrashort echo time imaging opens new application fields for magnetic resonance imaging. In this thesis, the known methods for imaging with ultrashort echo times are investigated and evaluated. Two new approaches that were developed in this work are presented. They aim to solve the problems of the previous methods and to allow for robust image quality. No hardware changes should be required for the MR scanner. The ’Gradient Optimized Single Point imaging with Echo time Leveraging’ (GOSPEL) sequence is a single-point sequence. Compared to the known single-point sequences, GOSPEL enables a reduced echo time. It is demonstrated that this allows for an enhanced SNR for tissues with fast decaying signal. The problem of very long measurement times with single point sequences is solved with the ’Pointwise Encoding Time reduction with Radial Acquisition’ (PETRA) sequence. In this approach, outer k-space is acquired with radial half-projections while the k-space center is acquired single-pointwise. The combination of these two acquisition strategies allows for fast and robust ultrashort echo time imaging without the need for hardware changes. Comparable to other approaches, the imaging gradients at the PETRA sequence are already switched on during the excitation pulse. The influence of unwanted slice-selectivity of the pulse is investigated. A newly developed correction algorithm is presented that eliminates artefacts due to unwanted slice-selectivity. The limitations of the correction approach are presented and discussed. A number of application examples of the PETRA sequence at different field strengths is demonstrated. The PETRA and GOSPEL sequence, and other ultrashort echo time sequences, have very limited gradient activities. Due to this, the measurements can be kept very silent. Acoustic noise measurements show that the acoustic noise level during PETRA examinations is only raised by one to five dB(A). It is demonstrated, that this might enable new applications. Comparing measurements between T1-weighted PETRA images and MPRAGE images lead to images with comparable contrast, resolution, SNR and measurement times. With the methods developed in this thesis, issues of existing ultrashort echo time approaches can be solved and answers to open questions are given. The outcomes could help to further establish the use of ultrashort echo time sequences in clinical routine applications. KW - Kernspintomographie KW - Spin-Spin-Relaxation KW - Magnetresonanz KW - Magnetresonanzbildgebung KW - Echozeit KW - MRI KW - echo time KW - magnetic resonance imaging Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71328 ER - TY - THES A1 - Fidler, Florian T1 - Die Durchblutung des menschlichen Herzmuskels : quantitative Bestimmung in vivo mittels Kernspintomographie T1 - The perfusion of the human heart: Quantitative Assessment in vivo using magnetic resonance tomography N2 - Die Aufgabenstellung dieser Arbeit bestand in der Entwicklung und Umsetzung von Verfahren, mit denen die Durchblutung des menschlichen Herzmuskels quantitativ bestimmt werden kann. Im Rahmen dieser Arbeit wurden dazu zwei Ansätze verfolgt, das kontrastmittelfreie Spin-Labeling Verfahren und die kontrastmittelgestützte First-Pass Messung N2 - The goal of this dissertation was the developement and implementation of methods to quantify the microcirculation of the human heart. To this end, two approaches were investigated, a contrast agent free spin-labeling technique, and a contrast agent based First-Pass technique. KW - Herzmuskel KW - Durchblutungsmessung KW - NMR-Tomographie KW - Durchblutung KW - MRT KW - Herz KW - perfusion KW - MRI KW - heart Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-12784 ER - TY - THES A1 - Arnold, Johannes F. T. T1 - Funktionelle Bildgebung der Lunge und des Bronchialkarzinoms mittels Magnetresonanztomographie T1 - Functional Magnetic Resonance Imaging of the Lung and Non-Small-Cell Lung Cancer N2 - Ziel dieser Arbeit war es, die Magnetresonanztomographie (MRT) an der Lunge als Alternative zur traditionellen Lungenbildgebung voranzutreiben. So sollten MRT-Verfahren zur regionalen und quantitativen Lungenfunktionsprüfung für die klinische Routine entwickelt werden. Im Hinblick auf die Strahlentherapie von Patienten mit Bronchialkarzinom sollen funktionelle Lungenareale erkannt werden, um diese während der Bestrahlung optimal schonen zu können. An den zahlreichen Luft-Gewebe-Grenzflächen in der Lunge entstehen Magnetfeldinhomogenitäten. Daraus resultiert ein schneller Zerfall des MRT-Signals in der Lunge. Es wurde in dieser Arbeit ein Ansatz aufgezeigt, um die Ursache für den raschen Signalzerfall, nämlich die unterschiedlichen magnetischen Suszeptibilitäten von Lufträumen und Lungengewebe, zu beseitigen. Durch die intravaskuläre Injektion von paramagnetischen Kontrastmitteln kann die Suszeptibilität des Blutes an die Suszeptibilität der Lufträume angeglichen werden. Durch die Entwicklung einer MR-kompatiblen aktiven Atemkontrolle (MR-ABC) wurde in dieser Arbeit ein weiteres fundamentales Problem der Lungen-MRT adressiert: Die Bewegung während der Datenakquisition. Die MR-ABC detektiert Herzschlag und Atemposition und ist in der Lage die Atembewegung in jeder beliebigen Atemphase reproduzierbar für eine definierte Zeit auszusetzen. Dies wird durch einen Verschluss der Atemluftzufuhr realisiert. Traditionelle Verfahren können zwar ebenfalls die Atemphase detektieren, gestatten jedoch nicht deren Konservierung. Es wurde demonstriert, dass mit der MR-ABC hochauflösende Bilder der Lunge in hoher Bildqualität und durch die Verwendung langer Akquisitionsfenster in relativ kurzer Messzeit erreicht werden können. Eine regionale Lungenfunktionsprüfung ist für die Diagnose und Evaluierung vieler Krankheitsbilder vorteilhaft. In diesem Sinne wird seit einigen Jahren das Potential der Sauerstoff-verstärkten Lungen-MRT erforscht, die auf den paramagnetischen Eigenschaften des molekularen Sauerstoffs basiert. Im Blut gelöster Sauerstoff führt zu einer Verkürzung der T1-Relaxationszeit. Statt diese T1-Verkürzung quantitativ zu bestimmen wird aus praktischen Gründen meist ein T1-gewichteter Ansatz gewählt. In dieser Arbeit wurde jedoch gezeigt, dass nicht-quantitative Verfahren ein erhebliches Risiko zur Falschinterpretation beinhalten. Um Fehldiagnosen zu vermeiden, sollten deshalb prinzipiell quantitative Methoden zur Messung der durch die Sauerstoff-Verstärkung bedingten T1-Verkürzung in der Lunge verwendet werden. Herkömmliche Techniken zur quantitativen T1-Messung benötigen allerdings längere Messzeiten. Deshalb war zur Vermeidung von Bewegungsartefakten bisher die Datenaufnahme im Atemanhaltezustand notwendig. Wiederholtes Atemanhalten von mehreren Sekunden Dauer ist allerdings für einige Patienten sehr belastend. Aus diesem Grund wurden in dieser Arbeit zwei Methoden entwickelt, die eine quantitative Lungenfunktionsprüfung mittels MRT bei freier Atmung der Patienten ermöglichen. Eine gute Sauerstoffversorgung des Tumors wirkt sich positiv auf den Erfolg der Bestrahlung aus. Ein Ansatz zur Verbesserung der Strahlentherapie des Bronchialkarzinoms könnte daher in der Beatmung der Patienten mit hyperoxischen hypercapnischen Atemgasen während der Bestrahlung bestehen. In diesem Zusammenhang könnte die quantitative Messung der T1-Veränderung im Tumor nach Carbogenatmung ein Selektionskriterium darstellen, um diejenigen Patienten zu identifizieren, die von einer Carbogenbeatmung während der Bestrahlung profitieren können. Die Differenzierung zwischen vitalem Tumorgewebe, Nekrosen und atelektatischem Lungengewebe ist von großer Bedeutung bei der Bestrahlungsplanung des Bronchialkarzinoms. Einen neuen Ansatz bildet die in dieser Arbeit vorgestellte Magnetiserungstransfer-MRT. Um einen Magnetisierungstransfer zu erzeugen, wurde ein speziell auf die Bildgebung an der Lunge optimiertes Präparationsmodul entworfen. In Verbindung mit einer schnellen Bildakquisitionstechnik konnte die Magnetisierungstransfer-Lungenbildgebung in einem kurzen Atemstopp durchgeführt werden. Diese Technik wurde an mehreren Patienten mit Bronchialkarzinom evaluiert und die Ergebnisse mit denen der Fluor-Deoxyglykose-Positronen-Emissions-Tomographie (FDG-PET) verglichen. Es wurde festgestellt, dass mit diesem MRT-Verfahren ähnliche diagnostische Erkenntnisse erzielt werden können. Allerdings besitzt die MRT Vorteile im Hinblick auf räumliche Auflösung, Messzeit, Bildqualität, Kosten und Strahlenbelastung. Das erhebliche Potential für die Bestrahlungsplanung des Bronchialkarzinoms durch eine Magnetisierungstransfer-Bildgebung wurde damit nachgewiesen. N2 - The purpose of this work was to advance magnetic resonance imaging (MRI) to become an additional beneficial modality for lung imaging. MRI techniques for regional and quantitative assessment of pulmonary function, capable for clinical routine use, should be developed. Areas of sound and functional lung should be detected especially in patients with bronchial carcinoma undergoing radiotherapy, to be able to achieve an optimal protection for this kind of tissue during the irradiation process. Magnetic field inhomogeneities emerge from the numerous air-tissue-interfaces of the lung, causing an accelerated MRI signal decay. Therefore, this work postulates a new approach to eliminate the source of this signal decay acceleration, namely the differences in magnetic susceptibility between air sacks and lung tissue. By intravascular injection of paramagnetic contrast agent, the susceptibility of blood can be matched with the susceptibility of the air spaces. Removing the susceptibility differences could prolong the effective transverse relaxation time T2* by many factors. The development of an MR-compatible active breathing control device (MR-ABC) addressed another fundamental obstacle of lung MRI: motion occurring during the data sampling process. MR-ABC allows for the detection of heart and respiratory phases and is able to reproducibly freeze the breathing motion in any desired respiratory phase for a predefined amount of time. This is performed by a shutter that closes the breathing gas delivery. It was demonstrated that using MR-ABC high-resolution high-quality images of the lung can be acquired in a comparably short amount of time due to prolonged acquisition intervals. Regional assessment of pulmonary function is beneficial for diagnosis and evaluation of many lung diseases. In this respect, in the last few years the potential of oxygen-enhanced lung MRI based upon the paramagnetic properties of the molecular oxygen, started to be explored. Dissolved oxygen in the blood leads to a decrease in T1 relaxation time. Due to practical reasons this drop in T1 relaxation time is commonly assessed by T1-weighted imaging approaches instead of quantitative T1 measurements. However, in this work it was demonstrated that non-quantitative approaches comprehend severe risks of misinterpretation. Therefore, to avoid misdiagnosis, quantitative measurements of the oxygen-based T1 decrement in the lung should always be used. On the other hand, common quantitative T1 measurement techniques require longer measurement times, and therefore require imaging during breath-holding to avoid motion artifacts. Repeated breath-holding of several seconds may be very demanding for some patients, especially for those with lung cancer. For this reason, in this work two methods were developed to allow for a quantitative assessment of regional lung function by MRI during free-breathing. These techniques were applied to investigate regional oxygen transfer in lung cancer patients. Local defects of lung function could be demonstrated in these patients. A good oxygen supply of the tumor tissue is positively correlated to the success of radiation therapy. Reoxygenation of former hypoxic areas can improve the sensitivity of the tumor to irradiation. Thus, one approach to improve radiotherapy of bronchogenic carcinoma could be to use hyperoxic, hypercapnic breathing gases such as carbogen during the irradiation. In this respect, the quantitative measurement of the T1 alteration in the tumor due to the switching of breathing gas to carbogen could provide a selection criterion for patients who can benefit from an ARCON approach. In a preliminary study, the T1 alteration in the tumor after switching of breathing gas to carbogen was assessed in a variety of lung cancer patients. Differentiation of vital tumor, necrotic tissue and atelectasis is of paramount importance in radiation therapy planning of bronchial carcinoma. Unfortunately, discrimination of these tissues by using computer tomography or positron emission tomography is usually problematic in the clinical routine. This work proposes a new approach based on magnetization transfer MRI. The extent of magnetization transfer is mainly dependent on the macromolecular environment of the protons, which is different in tumor tissue and atelectatic tissue. To produce magnetization transfer, a magnetization preparation module was developed and particularly optimized for application to lung imaging. In conjunction with a fast readout imaging sequence, magnetization transfer lung imaging could be performed in a single short breath-hold period. This technique was evaluated in several patients with bronchial carcinoma. The results of magnetization transfer imaging were compared to the results of a fluorodeoxyglucose positron emission tomography (FDG-PET) investigation. It was found that using the MRI technique, similar diagnostic information as with the FDG-PET could be obtained. KW - Magnetische Resonanz KW - Lunge KW - Nicht-kleinzelliges Bronchialkarzinom KW - MRI KW - Lung KW - NSCLC Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-26388 ER -