TY - THES A1 - Körner, Ulrich T1 - Funktionelle Rolle von HMGN-Proteinen während der Embryonalentwicklung von Xenopus laevis T1 - The functional role of the HMGN proteins during embryogenesis of Xenopus laevis N2 - HMGN Proteine sind Architekturelemente des Chromatins und besitzen die Fähigkeit, Chromatin aufzulockern. Sie ermöglichen anderen Proteinen den Zugang zu Nukleosomen und unterstützen DNA-abhängige Prozesse wie Replikation, Transkription und DNA-Reparatur. In dieser Arbeit wurde die funktionelle Rolle der HMGN Proteine während der Embryogenese am Beispiel des südafrikanischen Krallenfroschs Xenopus laevis untersucht. Dabei wurde entdeckt, dass sowohl die Expression als auch die zelluläre Verteilung der HMGN Proteine entwicklungsspezifisch reguliert ist. Eine Manipulation der HMGN Proteinmengen während der Embryonalentwicklung führte zu schweren Fehlentwicklungen in Postblastula Embryonen. In der Oogenese waren sowohl Xenopus HMGN mRNAs als auch Xenopus HMGN Proteine in allen Oozytenstadien nachweisbar. Interessanterweise waren HMGN Proteine in späteren Oozytenstadien nur im Zytoplasma zu finden und nicht mit Lampenbürstenchromosomen assoziiert. Im Zuge der Maturation der Oozyten zu Eiern verschwinden die Proteine gänzlich. Während der Embryogenese waren HMGN Proteine dann erst wieder ab der Blastula detektierbar, zeitgleich mit der transkriptionellen Aktivierung des embryonalen Genoms. Gleichzeitig wiesen ihre Expressionsmuster, zumindest auf mRNA-Ebene, auf Gewebspezifität hin. Whole mount in situ-Hybridisierungen und RT-PCR-Analysen zeigten eine erhöhte mRNA-Menge in mesodermalen und neuroektodermalen Geweben von Schwanzknospenstadien. Nach Injektion rekombinanter HMGN Proteine (Überexpression) oder Morpholino-Antisense-Oligonukleotiden (knock-down) in die Zygote entwickelten sich Embryonen mit offenen Rücken, stark verkürzten und gebogenen Körperachsen und deformierten Kopfstrukturen als Hauptmerkmale. Histologische Analysen und insbesondere die Magnetresonanz Bildgebung deuteten auf Fehler in der Mesodermdifferenzierung hin. Die Analysen zeigen, dass eine bestimmte kritische zelluläre HMGN Proteinmenge für eine korrekte Embryonalentwicklung von Xenopus laevis notwendig ist. Durch „animal cap assays“ und RT-PCR-Expressionsanalysen Mesoderm-spezifischer Gene konnte schließlich gezeigt werden, dass HMGN Proteine die Regulation Mesoderm-spezifischer Gene beeinflussen. Die Ergebnisse lassen vermuten, dass auch die HMGN-Genexpression während der Mesodermdifferenzierung reguliert wird. Durch eine Analyse des Expressionsbeginns entwicklungsrelevanter Gene während der Midblastula Transition konnte gezeigt werden, dass veränderte HMGN Proteinmengen den Expressionsbeginn spezifischer Gene wie Xbra und chordin beeinflussen. Damit konnte zum ersten Mal ein Einfluss dieser ubiquitären Chromatinproteine auf die Expression spezifischer Gene gefunden werden. Die durch HMGN Proteine verursachte fehlerhafte Expression von Xbra und chordin als Schlüsselgene der Mesodermdifferenzierung kann die Fehlentwicklungen mesodermaler Strukturen erklären. N2 - HMGN proteins are architectural chromatin proteins that reduce the compaction of the chromatin fiber, facilitate access to nucleosomes and modulate DNA-dependent processes such as replication, transcription and DNA repair. In this work the functional role of the HMGN proteins during embryogenesis was analyzed using the African clawed frog Xenopus laevis as a model system. The expression and cellular location of the HMGN proteins was found to be developmentally regulated. Experimental manipulations of the HMGN protein amounts led to gross developmental defects in postblastula embryos. HMGN transcripts and proteins were present throughout oogenesis. Interestingly, the HMGN proteins were stored in the cytoplasm of later oocyte stages and excluded from the oocytes nuclei and lampbrush chromosomes. Upon maturation of oocytes into eggs, HMGN proteins were no longer detectable. During embryogenesis, HMGN proteins were first detected in blastula stage embryos, coinciding with the transcriptional activation of the embryonic genome. At least at the mRNA level the expression pattern showed a tissue specific pattern, with relatively high levels of mRNAs in the mesodermal and neuroectodermal regions of early tailbud embryos as shown by whole mount in-situ hybridization and RT-PCR-analyses. After microinjection of recombinant HMGN proteins (overexpression) or morpholino-antisense oligonucleotides (knock-down) the embryos displayed typical phenotypes with imperfect closure of the blastopore, distorted body axis and abnormal head structures. Histological analyses and magnetic resonance imaging indicated that mesoderm differentiation was particularly affected by aberrant HMGN protein levels. The results demonstrate that proper embryonic development of Xenopus laevis requires precisely regulated levels of HMGN proteins. “Animal cap assays” and RT-PCR-analyses of the expression of mesodermal genes indicated that HMGN proteins are involved in the regulation of mesoderm specific genes. These experiments also indicated that the HMGN expression itself is regulated during mesoderm differentiation. Moreover, by studying the expression pattern of developmentally relevant genes during midblastula transition it became evident that altered HMGN protein levels influence the onset of the expression of specific genes such as Xbra and chordin. The results show, for the first time, that these ubiquitous chromatin proteins modulate the expression of specific genes. The HMGN-induced misexpression of Xbra and chordin as key regulatory genes during mesoderm differentiation may explain the observed malformations of mesodermal structures. KW - Glatter Krallenfrosch KW - HMG-Proteine KW - Genexpression KW - Embryonalentwicklung KW - HMGN Proteine KW - Xenopus laevis KW - Genexpression KW - Chromatin KW - Embryonalentwicklung KW - HMGN proteins KW - Xenopus laevis KW - chromatin KW - gene expression KW - early development Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-9166 ER - TY - THES A1 - Geiger, Dietmar T1 - Biophysikalische Untersuchung von Phloem-lokalisierten Carriern und Kaliumkanälen und deren Interaktion im Modellsystem der Xenopus Oozyte T1 - Biophysical studies of phloem-localized carriers and potassium channels and their interaction in the model system of Xenopus oocytes N2 - Das Phloem stellt ein Netzwerk zur Assimilat- und Nährstofftranslokation sowie zur elektrischen Kommunikation innerhalb der Pflanze dar. In apoplastisch beladenden Pflanzen werden die funktionellen Eigenschaften des Phloems im Wesentlichen vom Zusammenspiel eines Transportmoduls, bestehend aus Carriern, Kaliumkanälen und Protonen-ATPasen, bestimmt. Ausgangspunkt für die biophysikalische Charakterisierung dieses Phloem-Transportmoduls waren Arbeiten zum Saccharosetransport in der Arabidopsis akt2/3-1 Mutante. Das AKT2/3 Gen kodiert für einen Phloem-spezifischen Kaliumkanal vom Shaker-Typ. Die Tatsache, dass der Saccharosegehalt im Phloem dieser Mutante um 50% im Vergleich zum Wildtyp reduziert war, ließ eine enge Kopplung von Kalium- und Zuckerflüssen vermuten. Um diesen Phänotyp aufklären zu können und ein Modell für die Beladungsprozesse an der Phloemmembran zu entwickeln, wurde das heterologe Expressionssystem der Xenopus Oozyten gewählt. So konnte in Coexpressionsstudien die Interaktion von Phloem-lokalisierten Kaliumkanälen und Transportern sowie die Kopplung des Kalium- und Zuckertransports mit Hilfe biophysikalischer Methoden untersucht werden. N2 - In plants the phloem tissue constitutes a network providing for assimilate and nutrient translocation as well as electrical communication. A transport module, consisting of carriers, channels and pumps plays a pivotal role in apoplasmically loading plant species and determines the specific transport properties of phloem cells. The AKT2/3 channel represents a phloem-specific Shaker-like K+ channel of the model plant Arabidopsis thaliana. Based on the observation, that sucrose transport is severely impaired in the corresponding akt2/3-1 mutant, we hypothesised a tight coupling of potassium and sugar fluxes during phloem loading. In order to allow a biophysical characterisation of the transport processes at the phloem plasma membrane during sugar loading, we decided to employ Xenopus oocytes as a model system for the heterologous expression of phloem transport proteins. KW - Phloem KW - Glatter Krallenfrosch KW - Oozyte KW - Kaliumkanal KW - Zucker KW - Phloem KW - Kaliumkanal KW - Zuckertransport KW - Transporter KW - Xenopus KW - Phloem KW - Potassium channel KW - sugar transport KW - carrier KW - Xenopus Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13108 ER -