TY - THES A1 - Zeller, Wolfgang T1 - Entwicklung und Charakterisierung von Hochleistungslaserdioden bei 980 nm Wellenlänge T1 - Development and characterization of high-power laser diodes at 980 nm wavelength N2 - Ziel der Arbeit war die Entwicklung von lateral gekoppelten DFB-Halbleiterlasern für Hochleistungsanwendungen. Besonderes Augenmerk war dabei auf hohe COD-Schwellen und schmale Fernfeldverteilungen gerichtet. Ausgehend von einem LOC-Design wurden Simulationsrechnungen durchgeführt und ein neues Epitaxiedesign mit einer 2.5 μm dicken LOC, in welcher die aktive Schicht asymmetrisch positioniert ist, entwickelt. Durch die asymmetrische Anordnung der aktiven Schicht kann die im Falle von lateral gekoppelten DFB-Lasern sehr kritische Kopplung der Lichtmode an das modenselektive Gitter gewährleistet werden. Zudem reichen die Ausläufer der Lichtmode in diesem Design weiter in den Wellenleiter hinab als dies bei herkömmlichen Wellenleitern der Fall ist, so dass sich die Fernfeldeigenschaften der Laser verbessern. Die Fernfeldverteilungen solcher Laser weisen Halbwertsbreiten von 14° in lateraler und nur 19° in transversaler Richtung auf. Im Vergleich mit Standardstrukturen konnte die Ausdehnung des transversalen Fernfeldes also um mehr als 50 % reduziert werden. Außerdem ergibt sich eine nahezu runde Abstrahlcharakteristik, was die Einkopplungseffizienz in optische Systeme wie Glasfasern oder Linsen signifikant verbessert. Unter Ausnutzung der entwickelten Epitaxiestruktur mit asymmetrischer LOC wurde ein neues Lateraldesign entwickelt. Es handelt sich hierbei um Wellenleiterstege welche im Bereich der Facetten eine Verjüngung aufweisen. Durch diese wird die optische Mode tief in die 2.5 μm dicke Wellenleiterschicht geführt, welche sie in transversaler Richtung komplett ausfüllt. Durch den größeren Abstand der Lasermode vom Wellenleitersteg ergibt sich zudem eine deutliche schwächere laterale Führung, so dass sich die Mode auch parallel zur aktiven Schicht weiter ausdehnt. Die Lichtmode breitet sich folglich über eine deutlich größere Fläche aus, als dies bei einem gleichbleibend breiten Wellenleitersteg der Fall ist. Die somit signifikant kleinere Leistungsdichte auf der Laserfacette ist gleichbedeutend mit einem Anstieg der COD-Schwelle der Laser der im Einzelnen von den jeweiligen Designparametern von Schicht- und Lateralstruktur abhängig ist. Außerdem bewirkt die in lateraler und transversaler Richtung deutlich schwächere Lokalisation der Mode eine weitere Abnahme der Halbwertsbreiten der Laserfernfelder. Durch die im Vergleich zu herkömmlichen Laserstrukturen schwächere Lokalisation der Lichtmode im Bereich der Facetten ergeben sich äußerst schmale Fernfelder. Ein 1800 μm langer Laser, dessen Stegbreite über 200 μm hinweg auf 0.4 μm verringert wurde, zeigt Halbwertsbreiten von 5.2° in lateraler und 13.0° in transversaler Richtung. Damit sind die Fernfelder dieser Laser bedeutend kleiner als die bislang vorgestellter Laserdioden mit LOC. Die Geometrie der Taperstrukturen bestimmt, wie vollständig sich die Mode in den unteren Wellenleiterbereich ausbreiten kann und nimmt damit Einfluss auf die Laserfernfelder. Im CW-Modus durchgeführte Messungen an Lasern mit Taperstrukturen zeigen maximale Ausgangsleistung von 200 mW bevor die Laser in thermisches Überrollen übergehen. Bei einer Ausgangsleistung von 185 mW beträgt das Seitenmodenunterdrückungsverhältnis 33 dB. Im gepulsten Modus (50 ns Pulsdauer, 1MHz Wiederholungsrate) betriebene Laser zeigen hohe COD-Schwellen von mehreren hundert bis hin zu 1600 mW, die eine deutliche Abhängigkeit von der Endbreite der Taperstrukturen zeigen: Mit abnehmender Taperbreite ergibt sich eine starke Zunahme der COD-Schwelle. An einem 1800 μm langen Laser mit 200 μm langen Taperstrukturen die eine Endbreite von 0.3 μm aufweisen konnte eine COD-Schwelle von 1.6 W nachgewiesen werden. Im Gegensatz zu anderen Ansätzen, die ebenfalls longitudinal und lateral mono-modige DFB-Laser mit hohen Ausgangsleistungen zum Ziel haben, kann jedoch bei dem hier präsentierten Konzept aufgrund des Einsatzes von lateralen DFB-Gittern auf eine Unterbrechung des epitaktischen Wachstums verzichtet werden. Dies vereinfacht die Herstellung der Schichtstrukturen deutlich. Die hier vorgestellten Konzepte sind mit weiteren üblichen Vorgehensweisen zur Herstellung von Hochleistungslaserdioden, wie z.B. speziellen Facettenreinigungs- und Passivierungsverfahren oder Materialdurchmischung im Facettenbereich, kombinierbar. Zudem kann das hier am Beispiel des InGaAs/GaAs Materialsystems entwickelte Konzept auf alle zur Herstellung von Halbleiterlaserdioden üblichen Materialsysteme übertragen werden und eröffnet so eine völlig neue, material- und wellenlängenunabhängige Möglichkeit Abstrahlcharakteristik und Ausgangsleistung von Laserdioden zu optimieren. N2 - The primary objective of this work was the development of laterally coupled DFB semiconductor laser diodes for high-power applications. Special attention was turned to high COD thresholds and narrow farfield distributions. Based on a LOC design, simulations were undertaken and a new epitaxial design was devised featuring an active layer positioned asymmetrically in a LOC with a height of 2.5 μm. This design guarantees good coupling between the light mode and the lateral grating, something that is especially critical in the case of laterally coupled DFB lasers. Furthermore, due to this design the fringes of the light mode extend farther into the waveguide layers than possible in conventional waveguides, thereby improving the farfield characteristics of the devices. The farfield distributions of these laser diodes exhibit FWHM values of 14° in lateral and only 19° in transversal direction. Compared to standard designs the dimension of the transversal farfield could be reduced by more than 50 %, resulting in an almost circular farfield pattern, hence improving the coupling efficiency into optical fibers or lenses significantly. Based on the developed epitaxial design with an asymmetrical LOC, a new ridge design was devised. It features RWGs that are tapered down to a width of only several hundred nanometers at both ends of the laser cavity. Due to this tapered sections, the optical mode is pushed down into the 2.5 μm thick waveguide, filling it out completely in transversal direction. Because of the increased distance between the lasing mode and the RWG, the lateral mode guiding is also decreased, resulting in an expansion parallel to the epitaxial layers as well. Consequently the light spreads over a significantly larger area than in the case of a RWG of constant width. The thusly reduced power density at the laser facet is tantamount to an increase in COD threshold the extent of which depends on the particular design parameters of layer and ridge design respectively. Furthermore, the weaker localisation of the light mode causes a further decrease of the farfields’ FWHM values. Due to the localisation of the light mode being weaker than in conventional laser structures, the measured lasers’ farfield distributions are very narrow. A 1800 μm long laser with a 2.0 μm wide RWG tapered down to 0.4 μm over a length of 200 μm yields FWHM values of 5.2° in lateral and 13.0° in transversal direction. These values are considerably smaller than those achieved with other laser diodes based on LOC structures presented up to now. The layout of the taper structures determines the degree of the spread into the lower waveguide and therefore influences the farfield distributions. When measured in CW mode, the tapered lasers show a maximum optical output power of 200 mW before exhibiting thermal roll-over. Measured at an output power of 185 mW, the spectral characteristics yield a SMSR of 33 dB. Operated in pulsed mode (50 ns pulse length, 1 MHz repetition rate), the laser diodes show high COD thresholds of several hundred up to 1600 mW. The COD thresholds exhibit a strong dependence on the taper width viz. a fast increase of COD threshold with decreasing taper width. Data derived from measurements conducted with a 1800 μm long laser that was tapered down to a ridge width of only 0.3 μm over a length of 200 μm, yield a COD threshold of 1.6 W. Other approaches aiming at laterally and longitudinally mono-mode high-power DFB lasers are based on an epitaxial overgrowth step. This highly risky procedure could be foregone due to the use of DFB gratings positioned laterally to the RWG. The concepts presented here are fully compatible with other procedures usually used for manufacturing high power laser diodes with high COD thresholds, such as special facet cleaning and passivation procedures or quantum-well-intermixing. Above all, although the concept developed in this work was based on the InGaAs/GaAs material system, it can be transferred to virtually every material system used for the fabrication of semiconductor laser diodes. Thus the presented concept establishes a new way of optimizing both farfield and output power of laser diodes that is independent of both material system and emission wavelength. KW - DFB-Laser KW - mono-mode laser KW - quantum-well laser KW - DFB laser KW - high-power laser KW - large optical cavity KW - tapered laser KW - Einmodenlaser KW - Quantenwell-Laser KW - Quantenpunktlaser KW - Galliumarsenidlaser Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73409 ER - TY - THES A1 - Krebs, Roland T1 - Herstellung und Charakterisierung von kanten- und vertikalemittierenden (Ga)InAs/Ga(In)As-Quantenpunkt(laser)strukturen T1 - Fabrication and Characterization of edge and vertical emitting (Ga)InAs/Ga(In)As quantum dot (laser) structures N2 - Im Vergleich zu Quantenfilmlasern haben Quantenpunktlaser (unter anderem) die Vorteile, dass kleinere Schwellenströme zu erreichen sind und die Emissionswellenlänge über einen größeren Bereich abgestimmt werden kann, da diese aufgrund der Größenfluktuation im Quantenpunktensemble über ein breites Verstärkungsspektrum verfügen. Ziel des ersten Teils der Arbeit war es, monomodige 1.3 µm Quantenpunktlaser für Telekommunikationsanwendungen herzustellen und deren Eigenschaften zu optimieren. Es wurden sechs Quantenpunktschichten als aktive Zone in Laserstrukturen mit verbreitertem Wellenleiter eingebettet. Eine Messung der optischen Verstärkung einer solchen Laserstruktur mit sechs Quantenpunktschichten ergab einen Wert von 16.6 1/cm (für den Grundzustandsübergang) bei einer Stromdichte von 850 A/cm^2. Dadurch ist Laserbetrieb auf dem Grundzustand bis zu einer Resonatorlänge von 0.8 mm möglich. Für eine Laserstruktur mit sechs asymmetrischen DWELL-Schichten und optimierten Wachstumsparametern ergab sich eine Transparenzstromdichte von etwa 20 A/cm^2 pro Quantenpunktschicht und eine interne Quanteneffizienz von 0.47 bei einer internen Absorption von 1.0 1/cm. Aus den Laserproben wurden außerdem Stegwellenleiterlaser hergestellt. Mit einem 0.8 mm x 4 µm großen Bauteil konnte im gepulsten Betrieb Laseroszillation bis zu einer Rekordtemperatur von 156 °C gezeigt werden. 400 µm x 4 µm große Bauteile mit hochreflektierenden Spiegelvergütungen wiesen im Dauerstrichbetrieb Schwellenströme um 6 mA und externe Quanteneffizienzen an der Frontfacette von 0.23 W/A auf. Für Telekommunikationsanwendungen werden Bauteile benötigt, die lateral und longitudinal monomodig emittieren. Bei kantenemittierenden Lasern kann dies durch das DFB-Prinzip (DFB: distributed feedback) erreicht werden. Im Rahmen dieser Arbeit wurden die weltweit ersten DFB-Laser auf der Basis von 1.3 µm Quantenpunktlaserstrukturen hergestellt. Dazu wurden lateral zu den Stegen durch Elektronenstrahllithographie Metallgitter definiert, die durch Absorption die Modenselektion bewirken. Dank des etwa 100 nm breiten Verstärkungsspektrums der Laserstrukturen konnte eine Verstimmung der Emissionswellenlänge über einen Wellenlängenbereich von 80 nm ohne signifikante Verschlechterung der Bauteildaten erzielt werden. Anhand der 0.8 mm langen Bauteile wurden die weltweit ersten ochfrequenzmessungen an Lasern dieser Art durchgeführt. Für Quantenpunktlaser sind theoretisch aufgrund der hohen differentiellen Verstärkung kleine statische Linienbreiten und ein kleiner Chirp zu erwarten. Dies zeigte sich auch im Experiment. Der zweite Teil der Arbeit befasst sich mit vertikal emittierenden Quantenpunktstrukturen. Ziel dieses Teils der Arbeit war es, Quantenpunkt-VCSEL mit dotierten Spiegeln zunächst im Wellenlängenbereich um 1 µm herzustellen und auf dieser Basis die Realisierbarkeit von 1.3 µm Quantenpunkt-VCSELn zu untersuchen. Zunächst wurden undotierte Mikroresonatorstrukturen für Grundlagenuntersuchungen hergestellt, um die Qualität der Spiegelschichten zu testen und zu optimieren. Diese Strukturen bestanden aus 23.5 Perioden von Spiegelschichten aus AlAs und GaAs im unteren DBR (DBR: Distributed Bragg Reflector), einer lambda-dicken Kavität aus GaAs mit einer Quantenpunktschicht im Zentrum und einem oberen DBR mit 20 Perioden. Es konnten Resonatoren mit sehr hohen Güten über 8000 realisiert werden. Für die weiteren Arbeiten hinsichtlich der Herstellung von Quantenpunkt-VCSEL-Strukturen haben die Untersuchungen an den Mikroresonatorstrukturen gezeigt, dass es an der verwendeten MBE-Anlage möglich ist, qualitativ sehr hochwertige Spiegelstrukturen herzustellen. Aufbauend auf den Ergebnissen, die aus der Herstellung und Charakterisierung der Mikroresonatorstrukturen gewonnen worden waren, wurden nun Quantenpunkt-VCSEL-Strukturen hergestellt. Es wurden Strukturen mit 17.5 Perioden im unteren und 21 Perioden im oberen DBR sowie mit 20.5 Perioden im unteren und 30 Perioden im oberen DBR hergestellt. Erwartungsgemäß zeigten die VCSEL mit der höheren Spiegelanzahl auch die besseren Bauteildaten. Um VCSEL auch im Dauerstrich betreiben zu können, wurden Bauteile mit Oxidapertur hergestellt. Dazu wurden bei 30 µm großen Mesen die beiden Aperturschichten aus AlAs auf beiden Seiten der Kavität zur Strompfadbegrenzung bis auf 6 µm einoxidiert. Es konnte gezeigt werden, dass die Realisierung von Quantenpunkt-VCSELn im Wellenlängenbereich um 1 µm mit komplett dotierten Spiegeln ohne größere Abstriche bei den Bauteildaten möglich ist. Bei der Realisierung von 1.3 µm Quantenpunkt-VCSELn mit dotierten Spiegeln bereitet die im Vergleich zu den Absorptionsverlusten geringe optische Verstärkung Probleme. N2 - In comparison to quantum well lasers, quantum dot lasers provide (among others) the advantages that lower threshold currents are achievable and that the emission wavelength can be tuned over a larger range because the gain spectrum is wider due to the inhomogeneous broadening of the size distribution. The first part of the thesis deals with the theoretical basics and the preliminary investigations which were done before the fabrication of 1.3 µm quantum dot lasers as well as the characteristics of these lasers. The objective of this part of the thesis was the fabrication of single mode 1.3 µm quantum dot lasers for telecommunication applications and the optimization of their properties. Six quantum dot layers were included in the active region of a laser structure with a large optical cavity. The measurement of the optical gain of such a laser structure with six quantum dot layers yielded a value of 16.6 1/cm (for the ground state transition) at a current density of 850 A/cm^2. Thus, laser operation on the ground state is possible down to a cavity length of 0.8 mm. For a laser structure with six asymmetric DWELL layers and optimized growth parameters, a transparency current density of about 20 A/cm^2 per quantum dot layer and an internal quantum efficiency of 0.47 at an internal absorption as low as 1.0 1/cm could be obtained. Based on the laser structures ridge waveguide lasers were processed. With a 0.8 mm x 4 µm large device, laser operation in pulsed mode until 156 °C could be demonstrated. 400 µm x 4 µm large devices with highly reflective mirror coatings operated in continuous wave mode showed threshold currents as low as 6 mA and external quantum efficiencies at the front facet of 0.23 W/A. With these devices continuous wave operation up to 80 °C at an output power above 1 mW is possible. For telecommunication applications devices are needed that show lateral and longitudinal single mode emission. In the case of edge emitting lasers this can be realized with the DFB principle (DFB: distributed feedback). In the scope of this thesis the worldwide first DFB lasers on 1.3 µm quantum dot laser structures were fabricated. During the process, metal gratings lateral to the ridges were defined by electron beam lithography which cause the mode selection by absorption. Due to the 100 nm broad gain spectrum of the laser structures, the emission wavelength could be tuned over a range of about 80 nm without a significant degradation of the device properties. With 0.8 mm long DFB lasers the worldwide first high frequency measurements on lasers of this kind were performed. For quantum dot lasers one theoretically expects a small static linewidth and a small chirp because of the high differential gain. This was confirmed by the experiment. The second part of the thesis deals with vertical cavity surface emitting quantum dot structures. The main objective of this part of the thesis was to fabricate quantum dot VCSELs with doped mirrors in wavelength range around 1 µm and to examine on this basis the realizability of 1.3 µm quantum dot VCSELs. At first, undoped microresonator structures for fundamental studies were fabricated in order to test and to optimize the quality of the mirror layers. These structures consisted of 23.5 periods of AlAs and GaAs mirror layers in the lower DBR (DBR: Distributed Bragg Reflector), a lambda thick GaAs cavity with a single quantum dot layer in the center and an upper DBR with 20 periods. Resonators with high quality factors well above 8000 could be realized. For the further workings concerning the fabrication of quantum dot VCSEL structures the investigations on the microresonator samples have shown that with the MBE system used it is possible to fabricate high quality mirror structures. Based on the results from the fabrication and characterization of the microresonator structures, quantum dot VCSEL structures were fabricated. The VCSEL structures were designed as bottom emitters, which means that they emit from the substrate side. This design permits the epi-side down mounting of the samples on a heat sink. Samples with 17.5 periods in the lower and 21 periods in the upper DBR as well as samples with 20.5 periods in the lower and 30 periods in the upper DBR were fabricated. To be able to operate the VCSELs in continuous wave mode, devices with oxide aperture were processed. For that purpose, on 30 µm pillars both aperture layers consisting of AlAs adjacent to the cavity were oxidized down to a diameter of 6 µm to confine the current path. It could be demonstrated that the realization of quantum dot VCSELs in the 1 µm wavelength range with doped mirrors is possible without having to accept a trade-off as to the device performance. When trying to realize 1.3 µm quantum dot VCSELs with doped mirrors one runs into problems with the optical gain which is rather low as compared to the absorption losses. KW - Drei-Fünf-Halbleiter KW - Halbleiterlaser KW - Halbleiterlaser KW - GaAs KW - Quantenpunkte KW - VCSEL KW - DFB-Laser KW - semiconductor lasers KW - GaAs KW - quantum dots KW - VCSEL KW - DFB laser Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11328 ER - TY - THES A1 - Nähle, Lars T1 - Monomodige und weit abstimmbare Halbleiterlaser im GaSb-Materialsystem im Wellenlängenbereich von 3,0 - 3,4 μm T1 - Monomode and widely tunable semiconductor lasers in the GaSb material system in the wavelength range from 3.0 - 3.4 µm N2 - Ein Ziel der Arbeit war die Entwicklung spektral monomodiger DFB-Lasern im Wellenlängenbereich von 3,0-3,4µm. Diese sollten auf spezielle Anwendungen in der Absorptionsspektroskopie an Kohlenwasserstoffen gezielt angepasst werden. Hierfür wurden zwei auf GaSb-Material basierende Lasertypen untersucht - Interbandkaskadenlaser (ICL) und Diodenlaser mit quinären AlGaInAsSb-Barrieren- und Wellenleiter-Schichten. Für das ICL-Material wurde ein DFB-Prozess basierend auf vertikalen Seitengittern entwickelt. Dieser Ansatz ermöglichte monomodigen Laserbetrieb bei Realisierung der Laser mit Kopplungsgitter in nur einem Ätzschritt und ohne epitaktischen Überwachstumsschritt. Maximal mögliche Betriebstemperaturen von ~0°C für die auf dem verfügbaren epitaktischen Material entwickelten Laser wurden bestimmt. Eine Diskussion der thermischen Eigenschaften der Laser deckte Gründe für die Limitierung der Betriebstemperatur auf. Möglichkeiten zur Optimierung der Leistungsfähigkeit und Steigerung der Betriebstemperatur beim ICL-Ansatz wurden hierauf basierend vorgestellt. Als kritischster Parameter wurde hier die epitaxiebestimmte Temperaturstabilität der Laserschwelle ausgemacht. Weitere Entwicklungen umfassten die Herstellung von DFB-Lasern mit dem erwähnten Diodenlasermaterial mit quinären Barrieren. Es kam eine Prozessierung der Bauteile ohne Überwachstum unter Verwendung von lateralen Metallgittern zur Modenselektion zum Einsatz. Die Bestimmung optischer Parameter zur Entwicklung von Lasern mit guter DFB-Ausbeute wurde für das Epitaxiematerial mit quinären Barrieren >3,0µm von Wellenleiter-Simulationen unterstützt. Die Definition der Gitterstrukturen wurde auf niedrige Absorptionsverluste optimiert. So hergestellte Laser zeigten exzellente Eigenschaften mit maximalen Betriebstemperaturen im Dauerstrichbetrieb von >50°C und spektral monomodiger Emission um 2,95µm mit Seitenmodenunterdrückungen (SMSR) bis 50dB. Diesem Konzept entsprechend wurden DFB-Laser speziell für die Acetylen-Detektion bei Wellenlängen von 3,03µm und 3,06µm entwickelt. Die für ~3,0µm entwickelte und erfolgreich angewendete DFB-Prozessierung wurde daraufhin auf den Wellenlängenbereich bis 3,4µm angepasst. Ein Prozesslauf mit verbesserter Wärmeabfuhr, ohne die Verwendung eines Polymers, wurde entwickelt. Es konnten DFB-Laser hergestellt werden, die fast den gesamten Wellenlängenbereich von 3,3-3,4µm abdeckten. Maximale Betriebstemperaturen dieser Laser lagen bei >20°C in Dauerstrichbetrieb bei ausgezeichneten spektralen Eigenschaften (SMSR 45dB). Spezielle Bauteile im Bereich 3,34-3,38µm, u.a. für die Detektion von Methan, Ethan und Propan, wurden entwickelt. Die in dieser Arbeit auf Diodenlasermaterial mit quinären Barrieren entwickelten DFB-Laser definieren für den gesamten Wellenlängenbereich von 2,8-3,4µm den aktuellen Stand der Technik für monomodige Laseremission durch direkte strahlende Übergänge. Sie stellen außerdem für den Wellenlängenbereich von 3,02-3,41µm die einzigen veröffentlichten DFB-Laser in cw-Betrieb bei Raumtemperatur dar. Eine maximale monomodige Emissionswellenlänge für Diodenlaser von 3412,1nm wurde erreicht. Ein weiteres Ziel der Arbeit war die Entwicklung weit abstimmbarer Laser von 3,3-3,4µm zur Ermöglichung erweiterter Anwendungen in der Kohlenwasserstoff-Gassensorik. Hierfür wurde ein Konzept zweisegmentiger Laser mit binären, überlagerten Gittern verwendet. Für diese sogenannten BSG-Laser konnte durch Simulationen unterstützt der Einfluss des kritischen Parameters der Phase der Bragg-Moden an den Facetten untersucht werden. Ein dementsprechend phasenoptimiertes Design der Gitterstrukturen wurde in den Segmenten der Laser angewendet. Simulationen des Durchstimmverhaltens der Laser wurden diskutiert und Einschätzungen über das reale Verhalten in hergestellten Bauteilen gegeben. Die entwickelten Laser wiesen Emission in bis zu vier ansteuerbaren, monomodigen Wellenlängenkanälen auf. Sie zeigten ein den Simulationen entsprechendes, sehr gutes Durchstimmverhalten in den Kanälen (bis zu ~30nm). Die Entwicklung eines bestimmten Lasers in dieser Arbeit war speziell auf die industrielle Anwendung in einem Sensorsystem mit monomodigen Emissionen um 3333nm und 3357nm ausgelegt. Für diese Wellenlängenkanäle wurden spektrale Messungen mit hohem Dynamikbereich gemacht. Mit SMSR bis 45dB war eine hervorragende Anwendbarkeit in einem Sensorsystem gewährleistet. Der Aufbau mit nur zwei Lasersegmenten garantiert eine einfache Ansteuerung ohne komplexe Elektronik. Die in dieser Arbeit entwickelten weit abstimmbaren Laser stellen die bisher langwelligsten, monolithisch hergestellten, weit abstimmbaren Laser dar. Sie sind außerdem die bislang einzigen zweisegmentigen BSG-Laser, die in durch simultane Stromveränderung durchstimmbaren Wellenlängenkanälen ein Abstimmverhalten mit konstant hoher Seitenmodenunterdrückung und ohne Modensprünge zeigen. N2 - A major goal of this work was the development of spectrally monomode DFB lasers in the wavelength range around 3.0-3.4µm. It was intended to specifically adapt them to certain applications in absorption spectroscopy of hydrocarbons. To attain this goal, two types of laser concepts based on GaSb material were investigated - Interband Cascade Lasers and Diode Lasers with quinary AlGaInAsSb barrier and waveguide layers. A DFB process run based on vertical sidewall gratings was developed on the Interband Casade Laser material. This approach enabled monomode laser operation by processing of the lasers along with their feedback gratings in a single etch step and without an epitaxial overgrowth step. Possible maximum operating temperatures of ~0°C for the lasers developed by the applied processing route on the available epitaxial material were determined. A discussion of thermal properties for the lasers revealed reasons for the limitation of operating temperatures. Based on this, options for the optimization of performance and increase of operating temperatures with the Interband Cascade Laser approach were presented. The epitaxially determined temperature stability of the laser threshold was made out as the most critical parameter. Further developments comprised the fabrication of DFB lasers with the prementioned Diode Laser material with quinary barriers. A processing concept without overgrowth employing lateral metal gratings for mode selection was applied. The determination of optical parameters for the development of lasers with a good DFB yield was supported by waveguide simulations of the epitaxial material with quinary barriers >3.0µm. The definition of grating structures was optimized for low absorption losses. Correspondingly fabricated lasers showed outstanding characteristics, operating up to temperatures of >50°C in continuous mode with spectrally monomode emission of up to 50dB at ~2.95µm. Following this concept, DFB lasers were specifically developed for acetylene detection at wavelengths of 3.03µm and 3.06µm. The DFB processing route developed and successfully implemented for ~3.0µm was subsequently further optimized for the wavelength range up to 3.4µm. A process run with improved heat removal and without application of a polymer was established. DFB lasers that covered almost the entire wavelength range from 3.3-3.4µm, could be successfully developed. Maximum operating temperatures of these lasers amounted to >20°C in continuous mode, their spectral characteristics were excellent (side-mode suppression ratio 45dB). Specific devices in the range 3.34-3.38µm were developed, for example, for detection of methane, ethane and propane. The DFB lasers based on Diode Laser material with quinary barriers developed in this work define the current state of the art for monomode laser emission by direct radiative transitions for the entire wavelength range from 2.8-3.4µm. They also represent the only published DFB lasers operating in cw operation at room temperature in the wavelength range from 3.02-3.41µm. A maximum monomode emission wavelength for Diode Lasers of 3412.1nm has been reached. A further goal of this work was the development of widely tunable lasers from 3.3-3.4µm, to enable extended applications in hydrocarbon gas spectroscopy. Therefore a concept of two-segment lasers with Binary Superimposed Gratings (BSG) was applied. Supported by simulations, the influence of the critical parameter of the phase of the Bragg modes at the positions of the facets could be investigated for these BSG lasers. An according phase-optimized design of the grating structures was employed in the laser segments. Simulations of the lasers' tuning behaviour were discussed and estimations on the real behaviour of fabricated devices were given. The developed lasers exhibited emission in up to four addressable monomode wavelength channels. According to the simulations, they showed very good tuning behaviour within the channels (up to ~30nm). The development of a specific laser in this work was designed for industrial application in a sensor system with monomode emission around 3333nm and 3357nm. Spectral characterization of these channels was performed with a high dynamic range. Side-mode suppression ratios of up to 45dB guaranteed an outstanding applicability in a sensor system. The design with only two laser segments makes an easy control without the use of complex electronics possible. The widely tunable lasers developed in this work represent the monolithic widely tunable lasers with the highest emission wavelength so far. They are also so far the only two-segment BSG lasers with verified high monomode quality and mode-hop free tuning behaviour in channels tuned by co-directional current shifting in the segments. KW - Halbleiterlaser KW - Galliumantimonid KW - Abstimmbarer Laser KW - BSG-Laser KW - weit abstimmbare Laser KW - Kohlenwasserstoffsensorik KW - Semiconductor laser KW - DFB laser KW - diode laser KW - infrared spectroscopy KW - hydrocarbons KW - DFB-Laser KW - Laserdiode KW - Quantenkaskadenlaser KW - Gasanalyse KW - Kohlenwasserstoffe KW - Elektronenstrahllithographie Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-70538 ER -