TY - THES A1 - Richter, Georg T1 - Nachweis der elektrischen Spin-Injektion in II-VI-Halbleiter mittels Messung des elektrischen Widerstandes T1 - Experimental proof of electrical spin injection into II-VI semiconductors by measuring the electric resistance N2 - Die bisherigen Ergebnisse der elektrischen Spininjektion in Halbleiter im diffusivem Regime werden mit dem Modell von Schmidt et. al gut beschrieben. Eine Folgerung aus diesem Modell ist, dass n-dotierte, verdünnte magnetische Halbleiter ("diluted magnetic semiconductors", DMS) als Injektor-Materialien für die elektrische Spininjektion in Halbleiter gut geeignet sind. Im Jahr 1999 wurde darüber hinaus die elektrische Injektion von einem DMS in einem nicht magnetisch dotierten Halbleiter ("non magnetic semiconductors", NMS) mit optischen Mitteln nachgewiesen. Die elektrischen Eigenschaften des Metall-Halbleiter-Kontaktes vom Materialsystem n-(Be,Zn,Mn)Se - n-(Be,Zn)Se wurden untersucht und optimiert, wobei spezifische Kontakwiderstände von bis zu ca. 2 10^-3 Ohm cm^2 bei 4 K erreicht wurden. Der Kontakt zwischen n-(Be,Zn,Mn)Se und n-(Be,Zn)Se ist unkritisch, weil der auftretende Leitungsband-Offset lediglich 40 meV beträgt. Die Spininjektionsmessungen wurden an Bauteilen mit einem adaptiertem Design der Transmission-Line Messungen ("TLM") durchgeführt. Bei diesem Materialsystem wurde am Gesamtbauteil ein positiver Magnetowiderstand von bis zu 25 % detektiert. Da sowohl der intrinsische Magnetowiderstand der einzelnen Halbleiterschichten negativ bzw. konstant war, als auch kein besonderes Magnetowiderstandsverhalten an der Metall-Halbleiter-Grenzschicht festgestellt werden konnte, kann dieser Magnetowiderstand als erster elektrischer Nachweis einer Spininjektion in einen Halbleiter angesehen werden. Die bei geringeren Temperaturen (300 mK und 2 K) bereits bei kleineren B-Feldern eintretende Sättigung des Widerstandes ist darüberhinaus mit der Temparaturabhängigkeit der Zeeman-Aufspaltung des DMS in Einklang zu bringen. Eine systematische Untersuchung dieses "Large Magnetoresistance" Effektes von der Dotierung der beteiligten Halbleiter zeigt hingegen ein komplexeres Bild auf. Es scheint ein optimales Dotierregime, sowohl für den DMS als auch für den NMS zu geben. Höhere oder geringere Dotierung reduzieren die relative Größe des positiven Magnetowiderstandes. Auch bei stark unterschiedlich dotierten DMS- und NMS-Schichten tritt eine (partielle) Unterdrückung des Magnetowiderstandes auf, in Übereinstimmung mit dem Modell. Dies lässt den Schluss zu, dass neben einer, der Spininjektion abträglichen, großen Differenz der Ladungsträgerdichten, evtl. auch die Bandstrukturen der beteiligten Halbleiter für die Spininjektionseffekte von Bedeutung ist. Um die elektrische Spininjektion auch in der technologisch wichtigen Familie der III/V Halbleiter etablieren zu können, wurde die elektrische Spininjektion von n-(Cd,Mn)Se in n-InAs untersucht. Basierend auf den Prozessschritten "Elektronenstrahlbelichtung" und "nasschemisches Ätzen" wurde eine Ätztechnologie entwickelt und optimiert, bei der die Ätzraten über die zuvor durchgeführte EBL kontrollierbar eingestellt werden können. Mesas mit Breiten von bis zu 12 nm konnten damit hergestellt werden. Untersuchungen zur elektrischen Spininjektion von (Cd,Mn)Se in InAs wurden mit Stromtransport senkrecht zur Schichtstruktur durchgeführt. Erste Messungen deuten bei niedrigen Magnetfeldern (B< 1,5 T) auf eine ähnliche Abhängigkeit des Gesamtwiderstand vom externen Feld hin wie im Materialsystem (Be,Zn,Mn)Se - (Be,Zn)Se. Allerdings tritt bei höheren Feldern ein stark negativer Magnetowiderstand des Gesamtbauteils auf, der qualitativ einen ähnlichen Verlauf zeigt wie die (Cd,Mn)Se-Schicht allein. Da die I/U Kennlininen des Gesamtbauteils Nichtlinearitäten aufweisen, können Tunneleffekte an einer oder mehrerer Barrieren eine wichtige Rolle spielen. Ob durch diese Tunneleffekte eine elektrische Spinijektion induziert wird, kann noch nicht abschließend geklärt werden. Wünschenswert ist daher eine weitere Charakterisierung der Einzelschichten. Ein weiteres Ziel ist, in Verbindung mit den oben angeführten technologischen Vorbereitungen, eine durch Nanostrukturierung ermöglichte, delokale Messung des Magnetowiderstand. Durch dieses Messverfahren könnten etwaige Tunnel-Effekte an der Metall-DMS Schicht zwanglos von denen an der DMS-NMS Grenzschicht getrennt werden. N2 - This work deals with electrical spin injection in the diffusive regime. Results published up to now can be satisfactorily explained by the model of Schmidt et. al. As a consequence of the model, n-doped diluted magnetic semiconductors (DMS) are expected to be particularly suitable as injectors for electrical spin injection into non magnetic semiconductors (NMS). Furthermore electrical spin injection from a DMS into a NMS was confirmed by optical means in 1999. The electrical properties of the metal-semiconductor contact of the n doped (Be,Zn,Mn)Se and (Be,Zn)Se were investigated and optimized. Specific contact resistance values down to approx. 2 10^{-3} Ohm cm^2 could be reached at 4 K. The resistance at the interface between n-(Be,Zn,Mn)Se and n-(Be,Zn)Se can be neglected due to a small conduction band offset of only 40 meV. For spin injection experiments, devices with an adapted tranmission line design were fabricated. A relative magnetoresistance of the device of up to +25 % was achieved. In contrast, the intrinsic magnetoresistance of the individual semiconductor layers was negative or constant. In addition, no magnetoresistance at the metal semiconductor interface could be observed. Hence, the magnetoresistance of the device can be regarded as the first electrical proof of spin injection into a semiconductor. At low temperatures (300 mK and 2 K) saturation of the magnetoesistance takes place at lower fields. This can be assigned to the temperature dependence of the Zeeman-splitting in the DMS. A systematic study of this "Large Magnetoresistance" effect yields a complex dependency on the doping level. It appears that an optimal doping regime exists, both for the DMS and the NMS layer. Departures from these values reduce the relative magnitude of the magnetoresistance. Moreover very different doping levels of the DMS and NMS Layers result in a (partial) suppression of the magnetoresistance, consistent with the model. Thus, not only large differences of the doping levels, but also the band structures of the involved layers may have an impact on electrical spin injection. In order to establish electrical spin injection in III/V semiconductors the material system n-(Cd,Mn)Se / n-InAs was investigated. A new etching technology was developed for InAs-(Al,Ga)Sb, combining the steps of "electron beam exposure" and "wet chemical etching". This combination leads to etch rates which can be reproducibly adjusted by prior electron beam exposure. Mesas with widths down to 12 nm were achieved. Experiments for electrical spin injection from (Cd,Mn)Se into InAs were performed with current direction perpendicular to the layers. First measurements up to moderate fields (B< 1,5 T) indicated a dependency of the resistance on the external field similiar to that of the material (Be,Zn,Mn)Se - (Be,Zn)Se. Indeed, at higher fields the device exhibits a large negative magnetoresistance comparable to the single (Cd,Mn)Se layer. The I/V curves of the device are nonlinear, so tunneling effects in one or several of the interfaces may play a major role. It is not clear yet if these effects induce an electrical spin injection. Hence, further electrical characterization of the involved layers are called for. Furthermore a non-local measurement of the magnetoresistance could help in distinguishing between tunneling effects at the metal semiconductor interface and those between DMS and NMS. KW - Zwei-Sechs-Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - Spin-Injektion KW - Halbleiter KW - Magnetowiderstand KW - Spin-Polarisation KW - spin injection KW - semiconductor KW - magnetoresistance KW - spin polarization Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10911 ER - TY - THES A1 - Lehmann, Frank T1 - Prozessierung und elektrische Charakterisierung von ZnSe Heterostrukturen in verschiedenen Messgeometrien zum eindeutigen Nachweis der elektrischen Spininjektion T1 - Processing and electrical characterization of ZnSe heterostructures in various measurement geometries to unambiguously detect electrical spin injection N2 - 2-Punkt Transportmessungen, die in der Vergangenheit an ZnSe-basierenden DMS/NMS/DMS Multischichtsystemem durchgeführt wurden, zeigten eine 25-prozentige Erhöhung des Widerstandes beim Übergang vom unpolarisierten in den polarisierten Zustand des DMS. Dieser Magnetowiderstandseffekt wurde durch elektrische Spininjektion in den NMS erklärt. In dieser Arbeit wird zunächst anhand von 4-Punkt Transportmessungen an miniaturisierten, elektronenstrahllithographisch gefertigten DMS/NMS/DMS Strukturen dieser Widerstandseffekt näher untersucht, um eine Bestimmung der Spinrelaxationslänge im nichtmagnetischen II-VI Halbleiter zu erlauben. Aufgrund der im Rahmen dieser Experimente erhaltenen Ergebnisse muss jedoch die Verknüpfung des positiven Magnetowiderstandseffekts mit der elektrischen Spininjektion in den NMS des Multischichtsystems revidiert werden. Im weiteren Verlauf der Arbeit werden Strukturen mit Abmessungen in der Größenordnung von 1 µm hergestellt und gemessen, mit deren Hilfe ein eindeutiger Nachweis der elektrischen Spininjektion in einen nichtmagnetischen Halbleiter mittels Transportmessungen ermöglicht wird. Mit diesen Resultaten kann eine oberer Grenzwert für die Spinfliplänge in ZnBeSe von 100 nm abgeschätzt werden. N2 - 2-probe transport measurements that were performed in the past on ZnSe-based DMS/NMS/DMS multilayer-systems showed a 25% increase of the resistance during the transition of the DMS from its unpolarized to its polarized state. This magnetoresistance effect was described by spin injection into the NMS. In this work, this resistance effect is further investigated by 4-probe transport measurements on miniaturized DMS/NMS/DMS structures that were fabricated by electron beam lithography to allow the determination of the spin-relaxation length in the non-magnetic II-VI semiconductor. On the basis of the results that were obtained in the framework of these experiments the connection of the positive magnetoresistance effect with spin injection into the NMS of the multilayer-system has to be revised. In the further course of this work structures with dimensions of the order of 1 µm are fabricated und measured that allow the unambiguous detection of electrical spin injection into a non-magnetic semiconductor by transport measurements. With these results an upper limit of the spin-flip length in ZnBeSe of 100 nm can be estimated. KW - Zinkselenid KW - Heterostruktur KW - Elektronenspin KW - Diffusionsverfahren KW - Spininjektion KW - ZnSe-Heterostruktur KW - Transportmessung KW - Prozessierung KW - spin injection KW - ZnSe heterostructure KW - transport measurement KW - processing Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15003 ER - TY - THES A1 - Grabs, Peter T1 - Herstellung von Bauelementen für Spininjektionsexperimente mit semimagnetischen Halbleitern T1 - Fabrication of devices for spin injection experiments using dilute magnetic semiconductors N2 - Im Rahmen dieser Arbeit sollten Halbleiterheterostrukturen mit semimagnetischen II-VI-Halbleitern hergestellt werden, mit denen Experimente zum Nachweis und der Erforschung der Spininjektion in Halbleiter durchgeführt werden. Hierzu sollten optische und Transportexperimente dienen. Zur Polarisation der Elektronenspins werden semimagnetische II-VI-Halbleiter verwendet, bei denen in einem von außen angelegten magnetischen Feld bei tiefen Temperaturen durch den riesigen Zeemaneffekt die Spinentartung der Energiebänder aufgehoben ist. Da diese Aufspaltung sehr viel größer als die thermische Energie der Ladungsträger ist, sind diese nahezu vollständig spinpolarisiert. Für die vorgestellten Experimente wurden (Be,Zn,Mn)Se und (Cd,Mn)Se als Injektormaterialien verwendet. Durch die Verwendung von (Be,Zn,Mn)Se als Injektor konnte die Spinjektion in eine GaAs-Leuchtdiode nachgewiesen werden. Hierzu wurde der Grad der zirkularen Polarisation des von der Leuchtdiode emittierten Lichts gemessen, welches ein direktes Maß für die Spinpolarisation der injizierten Elektronen ist. Durch diverse Referenzmessungen konnte die Polarisation des Lichts eindeutig der Spininjektion in die Leuchtdiode zugeordnet werden. So konnten eventuell denkbare andere Ursachen, wie ein zirkularer Dichroismus des Injektormaterials oder die Geometrie des Experiments ausgeschlossen werden. Um die physikalischen Prozesse in der Spin-LED näher zu untersuchen, wurde eine Vielzahl von Experimenten durchgeführt. So wurde unter anderem die Abhängigkeit der Effizienz der Spininjektion von der Dicke der semimagnetischen (Be,Zn,Mn)Se-Schicht erforscht. Hieraus wurde eine magnetfeldabhängige Spin-Flip-Länge im semimagnetischen Halbleiter ermittelt, die kleiner als 20 nm ist. Im Zuge dieser Experimente wurde auch die magnetooptischen Eigenschaften dieser hochdotierten (Be,Zn,Mn)Se-Schichten untersucht. Die große Zeemanaufspaltung bleibt zwar erhalten, wird allerdings insbesondere unter Stromfluß durch eine isolierte Aufheizung der Manganionen in der Schicht reduziert. Die Spin-LEDs wurden auf eine eventuelle Eignung zur Detektion der Spininjektion in Seitenemission, wie es für Experimente mit anderen spinpolarisierenden Materialien nötig ist, getestet. Obwohl die Effizienz der Spininjektion in diesen LEDs nachweislich sehr hoch ist, konnte in Seitenemission keine Polarisation des emittierten Lichts nachgewiesen werden. In dieser Konfiguration sind (Al,Ga)As-LEDs als Detektor also nicht zu verwenden. Der Nachweis der Injektion spinpolarisierter Elektronen in einen Halbleiter sollte auch in Transportexperimenten erfolgen. Hierfür wurden (Be,Zn,Mn)Se/(Be,Zn)Se-Heterostrukturen hergestellt, die wie erwartet einen deutlichen positiven Magnetowiderstand zeigen, der nicht auf die verwendeten Materialien oder die Geometrie der Proben zurückzuführen ist. Der beobachtete Effekt scheint durch ein Zusammenspiel des semimagnetischen Halbleiters mit dem Metall-Halbleiter-Kontakt aufzutreten. Aus diesen Experimenten konnte eine Abschätzung der Spin-Flip-Länge in hochdotierten ZnSe-Schichten getroffen werden. Sie liegt zwischen 10 und 100 nm. Weiterhin sollten Spininjektionsexperimente an InAs durchgeführt werden. Zur Polarisation der Elektronenspins in diesen Experimenten sollte als semimagnetischer Halbleiter (Cd,Mn)Se verwendet werden, da es gitterangepasst zu InAs gewachsen werden kann. Anders als bei (Be,Zn,Mn)Se konnte jedoch auf nahezu keine Erfahrungen auf dem Gebiet der (Cd,Mn)Se-Epitaxie zurückgegriffen werden. Durch die Verwendung eines ZnTe-Puffers ist es gelungen (Cd,Mn)Se-Schichten auf InAs in sehr hoher struktureller Qualität herzustellen. Die Untersuchung der magnetooptischen Eigenschaften dieser Schichten bestätigte die Eignung von (Cd,Mn)Se als Injektor für die geplanten Spininjektionsexperimente. Für die elektrische Charakterisierung ist es nötig, (Cd,Mn)Se auf einem elektrisch isolierenden GaAs-Substrat mit einer (Al,Ga)Sb-Pufferschicht zu epitaxieren. Das monokristalline Wachstum von (Cd,Mn)Se-Schichten hierauf wurde nur durch die Verwendung eines ZnTe-Puffers möglich, der bei sehr niedrigen Substrattemperaturen im ALE-Modus gewachsen wird. Insbesondere die Dotierbarkeit der (Cd,Mn)Se-Schichten ist für die Spininjektionsexperimente wichtig. Es zeigte sich, dass sich die maximal erreichbare n-Dotierung mit Iod durch den Einbau von Mangan drastisch reduziert. Trotzdem ist es gelungen, (Cd,Mn)Se -Schichten herzustellen, die einen negativen Magnetowiderstand zeigen, was eine Voraussetzung für Spininjektionsexperimente ist. Für Transportexperimente sollen die spinpolarisierten Elektronen direkt in ein zweidimensionales Elektronengas injiziert werden. Hierfür wurden Heterostrukturen mit einem InAs-Quantentrog, in dem sich ein solches 2DEG ausbildet, hergestellt und in Hall-Messungen charakterisiert. Für die Realisierung dieser Experimente wurde ein Konzept erstellt und erste Versuche zu dessen Umsetzung durchgeführt. Ein zu lösendes Problem bleibt hierbei die Diffusion auf der freigelegten InAs-Oberfläche bei den für das (Cd,Mn)Se-Wachstum nötigen Substrattemperaturen. Leuchtdioden mit einem InAs-Quantentrog wurden für den Nachweis der Spininjektion in InAs auf optischem Wege hergestellt. Für die Realisierung einer solchen Leuchtdiode war es nötig, auf ein asymmetrisches Designs mit einer n-Barriere aus (Cd,Mn)Se und einer p-Barriere aus (Al,Ga)(Sb,As) zurückzugreifen. Es wurden sowohl magnetische als auch unmagnetische Referenzproben hergestellt und vermessen. Die Ergebnisse deuten auf einen experimentellen Nachweis der Spininjektion hin. N2 - The goal of this thesis was the fabrication of semiconductor heterostructures utilizing II-VI diluted magnetic semiconductors for optical and electrical spin injection experiments into semiconductors. To polarize the electron spins, II-VI diluted magnetic semiconductors were used, where, at low temperatures in an external magnetic field, the spin degeneracy of the energy bands is lifted by the Giant Zeeman Effect. The energy splitting is larger than the thermal energy of the carriers, leading to a nearly completely spin polarized electron population. For the discussed experiments, (Be,Zn,Mn)Se and (Cd,Mn)Se were used as spin aligner material. Spin injection into a GaAs-LED was demonstrated by using a (Be,Zn,Mn)Se injector. For this, the degree of circular polarization of the light emitted by the LED was measured, as a direct measure of the degree of polarization of the injected electrons. A huge effort was made to clearly prove that the origin of this optical polarization is indeed the injection of spin polarized electrons into the LED. By these experiments other spurious origins like a possible circular dichroism of the spin aligner or the geometry of the experiment could be excluded. A multitude of experiments was performed to investigate the physical processes playing a role in the Spin-LED. Inter alia the dependence of the efficiency of the spin injection on the thickness of the (Be,Zn,Mn)Se injector layer was examined and a magnetic field dependent spin flip length in the DMS was found which is smaller than 20 nm. During these experiments the magneto-optical properties of the doped (Be,Zn,Mn)Se layers were investigated. Although the Giant Zeeman Splitting is preserved it is reduced by a heating of the manganese ions especially when an electrical current is flowing. The usability of the Spin-LEDs for detection of spin injection in side emission, as it will be necessary for spin injection experiments with different spin aligners, was tested. Despite the evidenced highly efficient spin injection in these (Al,Ga)As Spin-LEDs, no optical polarization could be detected in side emission making them unemployable in this configuration. The evidence of the injection of spin polarized electrons into a semiconductor was also to be provided by electrical transport experiments. To do so (Be,Zn,Mn)Se/(Be,Zn)Se heterostructures were fabricated which show an expected increase of the resistance with increasing magnetic field, which is not associated with the used materials themselves, nor with the sample geometry. The observed effect seems to be due to the interplay between the diluted magnetic semiconductor and the semiconductor-metal-contact. These experiments lead to an estimate for the spin flip length in highly doped ZnSe between 10 and 100 nm. Furthermore, spin injection experiments into InAs were to be done. For this (Cd,Mn)Se was used as aligner of the electron spins because it can be grown lattice matched to InAs. Unlike to (Be,Zn,Mn)Se, there were nearly no previous experiences on the epitaxial growth of (Cd,Mn)Se. The growth of layers with very high structural quality was made possible by the introduction of a thin ZnTe buffer layer. Magnetooptical investigations showed the usability of this material as an injector material for the planned spin injection experiments. For further experiments it is necessary to grow (Cd,Mn)Se on an electrical insulating GaAs substrate with an (Al,Ga)Sb buffer layer. The monocrystalline growth of (Cd,Mn)Se could only be obtained by using a ZnTe buffer grown at very low substrate temperatures in an ALE mode. The dopability of the (Cd,Mn)Se layers is very important for the spin injection experiments. The maximum value of achievable n-type doping with iodine is drastically reduced by the incorporation of manganese. Nevertheless, we succeeded in fabricating highly doped (Cd,Mn)Se layers with negative magnetoresistance, a requirement for their use in spin injection experiments. To perform transport experiments the spin polarized electrons shall be injected directly into a two-dimensional electron gas. For this purpose heterostructures with an InAs quantum well containing such a 2DEG were produced and characterized by Hall measurements. A concept for the realization of these experiments was introduced and first steps for its implementation were made. The diffusion on the free InAs surface at the high substrate temperatures necessary for the (Cd,Mn)Se growth remains a problem to be solved. LEDs with an InAs quantum well were fabricated for the optical detection of spin injection into InAs. In order to realize such an LED, the use of an asymmetric design with an (Al,Ga)(Sb,As) p-type and a (Cd,Mn)Se n-type barrier was essential. Both magnetic and non-magnetic LEDs were grown and characterized. First results indicate evidence of spin injection in these LEDs. KW - Semimagnetischer Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - MBE KW - II-VI-Halbleiter KW - Spininjektion KW - MBE KW - II-VI-semiconductors KW - spin injection Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16048 ER -