TY - THES A1 - Steindamm, Andreas T1 - Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen T1 - Excitonic loss mechanisms in organic bilayer solar cells N2 - Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen. N2 - To increase the efficiencies of organic solar cells, understanding of the occurring loss mechanisms is crucial. In comparison to inorganic photovoltaic cells the electron hole pairs, referred to as excitons, are bound much stronger in organic semiconductors. Therefore dissociation into free charge carriers takes place at a hetero interface of a donor and an acceptor material. The necessary diffusion path to this interface entails recombination loss mechanisms resulting from diverse processes which represent one of the main loss channels in organic solar cells. Thus the focus of this work is set on the characterization and potential reduction of such excitonic loss mechanisms. As a model system planar heterojunction solar cells consisting of diindenoperylene (DIP) as donor and fullerene C60 as acceptor material were used. By combining electrical with spectroscopic measurement techniques diverse excitonic loss mechanisms in the active layers are characterized and the underlying microscopic processes are discussed. Firstly the structural, optical and electrical properties of the DIP/C60 solar cells are observed. In a second section the microscopic effects of an exciton blocking layer (EBL) consisting of bathophenanthroline (BPhen) are investigated by a complementary analysis of photoluminescence and electrical parameters of the solar cells. In doing so also metal penetration into the active organic layers is analyzed and effectively suppressed. The following study of intensity and temperature dependent j(V) characteristics reveals intrinsic cell parameters as well as recombination mechanisms of charge carriers in the active layers. Moreover information about the electronic states of the DIP layer responsible for recombination losses is obtained by temperature dependent spectroscopic analyses of photo- and electroluminescence of the solar cells. Additionally Raman spectra of solar cells and the individual organic thin films are discussed. Finally excitonic losses in solar cells at working conditions due to charge carrier interaction are quantified for the donor layer. During this work diverse relevant loss mechanisms in organic solar cells could be reduced. By identifying the microscopic origins of such losses an important prerequisite was set for further power efficiency enhancement of organic photovoltaic cells. KW - Organische Solarzelle KW - Exziton KW - Diindenoperylen KW - diindenoperylene KW - C60 KW - Bathophenanthrolin KW - bathophenanthroline KW - Bilagen-Solarzelle KW - exciton blocking layer KW - Rekombination KW - Photolumineszenz KW - Elektrolumineszenz KW - Raman-Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124002 ER - TY - THES A1 - Topczak, Anna Katharina T1 - Mechanismen des exzitonischen Transports und deren Dynamik in molekularen Dünnschichten für die organische Photovoltaik T1 - Mechanisms of the exciton transport and its dynamics in molecular thin films for organic photovoltaic applications N2 - Der Fokus dieser Arbeit liegt in der Untersuchung des exzitonischen Transports, sowie der Dynamik exzitonischer Zustände in organischen Halbleitern. Als fundamentale Fragestellung werden die inhärenten, materialspezifischen Parameter untersucht, welche Einfluss auf die Exzitonen-Diffusionslänge besitzen. Sowohl der Einfluss der strukturellen Ordnung als auch die fundamentalen exzitonischen Transporteigenschaften in molekularen Schichten werden anhand der archetypischen, morphologisch unterschiedlichen organischen Halbleiter Diindenoperylen (DIP), sowie dessen Derivaten, α-6T und C60 studiert. Die resultierende Filmbeschaffenheit wird mittels Röntgendiffraktometrie (XRD) und Rasterkraftmikroskopie (AFM) analysiert, welche Informationen über die Morphologie, die strukturelle Ordnung und die Mikrostruktur der jeweiligen molekularen Schichten auf verschiedenen Längenskalen liefern. Um Informationen über die Exzitonen-Diffusion und die damit einhergehende Exzitonen- Diffusionslänge LD zu erhalten, wurde die Methode des Photolumineszenz (PL)-Quenchings gewählt. Um umfassende Informationen zur Exzitonen-Bewegung in molekularen Dünnschichten zu erhalten, wurde mit Hilfe der Femtosekunden-Transienten-Absorptionsspektroskopie (TAS) und der zeitkorrelierten Einzelphotonenzählung (TCSPC) die Dynamik angeregter Energiezustände und deren jeweiliger Lebensdauer untersucht. Beide Messverfahren gewähren Einblicke in den zeitabhängigen Exzitonen-Transport und ermöglichen eine Bestimmung des Ursprungs möglicher Zerfallskanäle. Die zentralen Ergebnisse dieser Arbeit zeigen zum einen eine Korrelation zwischen LD und der strukturellen Ordnung der Schichtmorphologie, zum anderen weist die temperaturunabhängige Exzitonen-Bewegung in hochgeordneten polykristallinen DIP-Filmen auf die Möglichkeit der Existenz eines kohärenten Exzitonen-Transports bei tiefen Temperaturen unterhalb von 80 K hin. Zeitaufgelöste spektroskopische Untersuchungen lassen zudem auf ein breites Absorptionsband höherer angeregter Zustände schließen und weisen eine höhere Exzitonen- Zustandsdichte in polykristallinen DIP-Schichten im Vergleich zu ungeordneten Filmen auf. N2 - The objective of this work is the examination of the excitonic transport and its dynamics in organic semiconductors. A fundamental question dealt with in this thesis was related to inherent transport mechanisms, which govern the exciton diffusion length LD. To pursue this question, the excitonic transport in organic semiconductor thin films was examined in particular with regard to the influence of the structural coherence on LD as well as to the fundamental excitonic transport mechanisms. The resulting film structure of the samples is analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), which yield to information on the morphology, the structural order and the microstructure of the molecular films on various length scales. PL-quenching investigations were performed to determine the exciton transport properties in different archetypical organic semiconductors represented by thin films of Diindenoperylene (DIP) and its derivatives, C60 and α-6T. To receive a comprehensive picture of exciton motion in molecular thin films, the exciton dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and time correlated single photon spectroscopy (TCSPC). Both measurement techniques gain insights into the time dependent exciton transport as well as help to assign the origin of the occurring decay-channels. The main results of this work reveal a correlation of LD with the structural order of the film morphology. In addition, a temperature independent excitonic motion in polycrystalline films of DIP at low temperatures < 80 K hints at the existence of a coherent exciton transport. Furthermore, time dependent spectroscopic investigations indicate a broad absorption band formed by higher excited states which exhibits a higher excitonic density of states in crystalline DIP-layers compared to films with a lower degree of structural order or amorphous texture. KW - Organische Solarzelle KW - Exzitonen Transport KW - Exzitonenbeweglichkeit KW - Exzitonen Diffusionslänge KW - Exzitonen Dynamik KW - Photolumineszenz Quenching KW - Diindenoperylen KW - C60 KW - Transiente Absorptionsspektroskopie KW - Exziton KW - Organische Halbleiter KW - Photolumineszenz Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132280 ER - TY - THES A1 - Schmidt, Thomas T1 - Optische Untersuchung und Kontrolle der Spindynamik in Mn dotierten II-VI Quantenpunkten T1 - Optical Investigations and Control of Spindynamics in Mn doped II-VI Quantum Dots N2 - Die vorliegende Arbeit befasste sich mit dem Spin- und dem damit eng verbundenen Polarisationszustand von Ladungsträgern in CdSe/ZnSe Quantenpunkten. II-VI Materialsysteme können in geeigneter Weise mit dem Nebengruppenelement Mangan gemischt werden. Diese semimagnetischen Nanostrukturen weisen eine Vielzahl von charakteristischen optischen und elektrischen Besonderheiten auf. Verantwortlich dafür ist eine Austauschwechselwirkung zwischen dem Spin optisch erzeugter Ladungsträger und den 3d Elektronen der Mn Ionen. Im Rahmen dieser Arbeit erfolgte die Adressierung gezielter Spinzustände durch optische Anregung der Ladungsträger. Die Besetzung unterschiedlicher Spinzustände konnte durch Detektion des Polarisationsgrades der emittierten Photolumineszenz (PL) bestimmt werden. Dabei kamen verschiedene optische Methoden wie zeitaufgelöste und zeitintegrierte PL-Spektroskopie sowie Untersuchungen in Magnetfeldern zum Einsatz. N2 - The present thesis deals with the spin of charge carriers confined in CdSe/ZnSe quantum dots (QDs) closely linked to the polarization of emitted photons. II-VI material systems can be adequately mixed with the B-group element manganese. Such semimagnetic nanostructures offer a number of characteristic optical and electronic features. This is caused by an exchange interaction between the spin of optically excited carriers and the 3d electrons of the Mn ions. Within the framework of this thesis addressing of well defined spin states was realized by optical excitation of charge carriers. The occupation of different spin states was detected by the degree of polarization of the emitted photoluminescence (PL) light. For that purpose different optical methods of time-resolved and time-integrated spectroscopy as well as investigations in magnetic fields were applied. KW - Halbleiterschicht KW - Niederdimensionaler Halbleiter KW - Quantenpunkt KW - Optische Spektroskopie KW - Zirkularpolarisation KW - Polarisiertes Licht KW - Exziton KW - Spindynamik KW - semiconductor quantum dots KW - optical spectroscopy KW - circular polarization KW - exciton KW - spindynamic Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-36033 ER - TY - THES A1 - Keller, Dirk T1 - Optische Eigenschaften ZnSe-basierter zweidimensionaler Elektronengase und ihre Wechselwirkung mit magnetischen Ionen T1 - ZnSe-based QWs with a two-dimensional electron gas: Optical properties and interaction with magnetic ions N2 - In dieser Arbeit wurden nichtmagnetische und semimagnetische ZnSe-basierte Quantentröge untersucht. Im Mittelpunkt des Interesses standen hierbei vor allem die Modifikation der optischen Spektren mit einer zunehmenden Modulationsdotierung der Strukturen und der Einfluss von Spinflip-Streuungen der freien Band-Elektronen an den Mn-Ionen auf die Magnetisierung und somit die Zeeman-Aufspaltung der Strukturen. Als experimentelle Methoden wurden Photolumineszenz (PL), Photolumineszenzanregung (PLE) und Reflexionsmessungen verwendet, die in Magnetfeldern von bis zu B=48 T und bei Temperaturen im Bereich von 1.6 K bis 70 K durchgeführt wurden. Darüber hinaus wurde die Abhängigkeit der Spin-Gitter-Relaxationszeit der Mn-Ionen von der Mn-Konzentration und der Elektronengasdichte in den Quantentrögen durch zeitaufgelöste Lumineszenzmessungen untersucht. Der Einfluss eines Gradienten in der s/p-d-Austauschwechselwirkung auf die Diffusion der Ladungsträger bildet einen weiteren Schwerpunkt dieser Arbeit. Als experimentelle Methode wurde hierbei ortsaufgelöste Lumineszenz verwendet. N2 - In the present work, nonmagnetic and semimagnetic ZnSe based quantum wells were studied. The thesis was focussed on the modification of optical spectra with an increasing modulation-doping of the structures. Further emphasis was placed on the influence of the spinflip scattering of the free carriers and the Mn ions on the magnetization and thus the giant Zeeman splitting of the structures. As experimental methods, photoluminescence spectroscopy (PL), photoluminescence excitation spectroscopy (PLE) and reflection measurements were used and were performed in magnetic fields up to B=48 T and at temperatures within the range of 1.6 K to 70 K. In addition, the dependence of the spin-lattice relaxation time of the Mn ions on the Mn concentration and the electron density was examined by time-resolved luminescence spectroscopy. The influence of a gradient in the s/p-d-exchange interaction on the diffusion of carriers was studied by spatially resolved luminescence spectroscopy. KW - Zinkselenid KW - Dimension 2 KW - Elektronengas KW - Optische Eigenschaft KW - Manganselenide KW - Quantenwell KW - Elektronenstreuung KW - Spin flip KW - Manganion KW - Quantentrog KW - Magneto-optische Eigenschaften KW - 2DEG KW - Exziton KW - Spinflip-Streuung KW - quantum wells KW - magneto-optical properties KW - 2DEG KW - excitons KW - spinflip scattering Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-14774 ER -