TY - THES A1 - Wolf, Nadine T1 - Synthese, Charakterisierung und Modellierung von klassischen Sol-Gel- und Nanopartikel-Funktionsschichten auf der Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid T1 - Synthesis, characterization and modeling of classical sol gel and nanoparticle functional layers on the basis of indium tin oxide and alumnium zinc oxide N2 - Das Ziel dieser Arbeit ist neben der Synthese von Sol-Gel-Funktionsschichten auf der Basis von transparent leitfähigen Oxiden (transparent conducting oxides, TCOs) die umfassende infrarotoptische und elektrische Charakterisierung sowie Modellierung dieser Schichten. Es wurden sowohl über klassische Sol-Gel-Prozesse als auch über redispergierte Nanopartikel-Sole spektralselektive Funktionsschichten auf Glas- und Polycarbonat-Substraten appliziert, die einen möglichst hohen Reflexionsgrad im infraroten Spektralbereich und damit einhergehend einen möglichst geringen Gesamtemissionsgrad sowie einen niedrigen elektrischen Flächenwiderstand aufweisen. Zu diesem Zweck wurden dotierte Metalloxide, nämlich einerseits Zinn-dotiertes Indiumoxid (tin doped indium oxide, ITO) und andererseits Aluminium-dotiertes Zinkoxid (aluminum doped zinc oxide, AZO)verwendet. Im Rahmen dieser Arbeit wurden vertieft verschiedene Parameter untersucht, die bei der Präparation von niedrigemittierenden ITO- und AZO-Funktionsschichten im Hinblick auf die Optimierung ihrer infrarot-optischen und elektrischen Eigenschaften sowie ihrer Transmission im sichtbaren Spektralbereich von Bedeutung sind. Neben der Sol-Zusammensetzung von klassischen Sol-Gel-ITO-Beschichtungslösungen wurden auch die Beschichtungs- und Ausheizparameter bei der Herstellung von klassischen Sol-Gel-ITO- sowie -AZO-Funktionsschichten charakterisiert und optimiert. Bei den klassischen Sol-Gel- ITO-Funktionsschichten konnte als ein wesentliches Ergebnis der Arbeit der Gesamtemissionsgrad um 0.18 auf 0.17, bei in etwa gleichbleibenden visuellen Transmissionsgraden und elektrischen Flächenwiderständen, reduziert werden, wenn anstelle von (optimierten) Mehrfach-Beschichtungen Einfach-Beschichtungen mit einer schnelleren Ziehgeschwindigkeit anhand des Dip-Coating-Verfahrens hergestellt wurden. Mit einer klassischen Sol-Gel-ITO-Einfach-Beschichtung, die mit einer deutlich erhöhten Ziehgeschwindigkeit von 600 mm/min gedippt wurde, konnte mit einem Wert von 0.17 der kleinste Gesamtemissionsgrad dieser Arbeit erzielt werden. Die Gesamtemissionsgrade und elektrischen Flächenwiderstände von klassischen Sol-Gel-AZOFunktionsschichten konnten mit dem in dieser Arbeit optimierten Endheizprozess deutlich gesenkt werden. Bei Neunfach-AZO-Beschichtungen konnten der Gesamtemissionsgrad um 0.34 auf 0.50 und der elektrische Flächenwiderstand um knapp 89 % auf 65 Ω/sq verringert werden. Anhand von Hall-Messungen konnte darüber hinaus nachgewiesen werden, dass mit dem optimierten Endheizprozess, der eine erhöhte Temperatur während der Reduzierung der Schichten aufweist, mit N = 4.3·1019 cm-3 eine etwa doppelt so hohe Ladungsträgerdichte und mit µ = 18.7 cm2/Vs eine etwa drei Mal so große Beweglichkeit in den Schichten generiert wurden, im Vergleich zu jenen Schichten, die nach dem alten Endheizprozess ausgehärtet wurden. Das deutet darauf hin, dass bei dem optimierten Heizschema sowohl mehr Sauerstofffehlstellen und damit eine höhere Ladungsträgerdichte als auch Funktionsschichten mit einem höheren Kristallisationsgrad und damit einhergehend einer höheren Beweglichkeit ausgebildet werden. Ein Großteil der vorliegenden Arbeit behandelt die Optimierung und Charakterisierung von ITO-Nanopartikel-Solen bzw. -Funktionsschichten. Neben den verwendeten Nanopartikeln, dem Dispergierungsprozess, der Beschichtungsart sowie der jeweiligen Beschichtungsparameter und der Nachbehandlung der Funktionsschichten, wurde erstmals in einer ausführlichen Parameterstudie die Sol-Zusammensetzung im Hinblick auf die Optimierung der infrarot-optischen und elektrischen Eigenschaften der applizierten Funktionsschichten untersucht. Dabei wurde insbesondere der Einfluss der verwendeten Stabilisatoren sowie der verwendeten Lösungsmittel auf die Schichteigenschaften charakterisiert. Im Rahmen dieser Arbeit wird dargelegt, dass die exakte Zusammensetzung der Nanopartikel-Sole einen große Rolle spielt und die Wahl des verwendeten Lösungsmittels im Sol einen größeren Einfluss auf den Gesamtemissionsgrad und die elektrischen Flächenwiderstände der applizierten Schichten hat als die Wahl des verwendeten Stabilisators. Allerdings wird auch gezeigt, dass keine pauschalen Aussagen darüber getroffen werden können, welcher Stabilisator oder welches Lösungsmittel in den Nanopartikel-Solen zu Funktionsschichten mit kleinen Gesamtemissionsgraden und elektrischen Flächenwiderständen führt. Stattdessen muss jede einzelne Kombination von verwendetem Stabilisator und Lösungsmittel empirisch getestet werden, da jede Kombination zu Funktionsschichten mit anderen Eigenschaften führt. Zudem konnte im Rahmen dieser Arbeit erstmals stabile AZO-Nanopartikel-Sole über verschiedene Rezepte hergestellt werden. Neben der Optimierung und Charakterisierung von ITO- und AZO- klassischen Sol-Gel- sowie Nanopartikel-Solen und -Funktionsschichten wurden auch die infrarot-optischen Eigenschaften dieser Schichten modelliert, um die optischen Konstanten sowie die Schichtdicken zu bestimmen. Darüber hinaus wurden auch kommerziell erhältliche, gesputterte ITO- und AZO-Funktionsschichten modelliert. Die Reflexionsgrade dieser drei Funktionsschicht-Typen wurden einerseits ausschließlich mit dem Drude-Modell anhand eines selbstgeschriebenen Programmes in Sage modelliert, und andererseits mit einem komplexeren Fit-Modell, welches in der kommerziellen Software SCOUT aus dem erweiterten Drude-Modell, einem Kim-Oszillator sowie dem OJL-Modell aufgebaut wurde. In diesem Fit-Modell werden auch die Einflüsse der Glas-Substrate auf die Reflexionsgrade der applizierten Funktionsschichten berücksichtigt und es können die optischen Konstanten sowie die Dicken der Schichten ermittelt werden. Darüber hinaus wurde im Rahmen dieser Arbeit ein Ellipsometer installiert und geeignete Fit-Modelle entwickelt, anhand derer die Ellipsometer-Messungen ausgewertet und die optischen Konstanten sowie Schichtdicken der präparierten Schichten bestimmt werden können. N2 - The aim of this thesis is on the one hand the synthesis of sol-gel functional layers on the basis of transparent conducting oxides (TCOs) and on the other hand a comprehensive infrared-optical and electrical characterization as well as modeling of these layers. Spectrally selective coatings have been prepared with the classical sol-gel route as well as with redispersed nanoparticle sols on glass and polycarbonate substrates and these coatings should have a reflectance in the infrared spectral range which is as high as possible and therefore a total emittance and an electrical sheet resistance which are as small as possible. For this purpose tin doped indium oxide (ITO) and aluminum doped zinc oxide (AZO) have been used as doped metal oxides. Within this thesis several parameters have been investigated in-depth which play a decisive role in the preparation of ITO and AZO low emissivity coatings, in order to prepare such coatings with optimized infrared-optical and electrical properties as well as visual transmittances. Besides the composition of the classical sol-gel ITO coating solutions, also the parameters of the coating as well as the heating processes have been characterized and optimized in the manufacture of classical sol-gel ITO and AZO functional layers. As a significant result the total emittance of classical sol-gel ITO functional layers could be reduced by 0.18 to 0.17 while the visual transmittance and electrical sheet resistances stay approximately the same, if just one-layered coatings are applied with a higher withdrawal speed with the dip coating technique instead of (optimized) multi-layered coatings. With a classical sol-gel ITO single coating, which has been produced with a withdrawal speed of 600 mm/min, the smallest total emittance of this work could be realized with 0.17. The total emittances and electrical sheet resistances of classical sol-gel AZO functional layers were reduced drastically in this work by using the optimized final heating process. The total emittance could be reduced by 0.34 to 0.50 and the electrical sheet resistance by 89 % to 65Ω/sq with a coating which consists of nine single layers. On the basis of Hall measurements it has been shown that coatings which were treated with the optimized heating process (which exhibits a higher temperature during the reducing treatment of the coatings) show a higher charge carrier density as well as a higher mobility than those coatings treated with the old heating process. With the optimized heating process the ninelayered coatings exhibit a charge carrier density of N = 4.3·1019 cm-3 which is approximately twice as high and a mobility of µ = 18.7 cm2/Vs which is about three times higher than the values of coatings which have been heated with the old process. This indicates that with the optimized heating process more oxygen vacancies and, associated therewith a higher charge carrier density as well as a higher crystallinity of the layer and thus a higher mobility are generated. One focus of the presented work lies on the optimization and characterization of ITO redispersed nanoparticle sols and functional layers respectively. In addition to the used nanoparticles, the dispersion process, the coating type with the respective coating parameters and post-treatments of the functional layers also a detailed parameter study has been done. This parameter study examined the composition of the nanoparticle sols with a view to the optimization of the infrared-optical and electrical properties of the applied coatings. The coating properties have been studied in particularly with regard to the influence of the used stabilizers and solvents respectively. In this work it will be shown, that the accurate composition of the nanoparticle sols plays a decisive role and the choice of the used solvents has a bigger impact on the coating properties than the choice of the used stabilizers. However, it will also be shown, that no general statements can be made which stabilizers or which solvents within the sols lead to coatings which have small total emittances and small electrical sheet resistances. Instead each combination of used stabilizer and used solvent has to be empirically tested since each combination leads to coatings with different properties. Furthermore stable AZO nanoparticle sols based on several formulas have been developed for the first time. Besides the optimization and characterization of ITO and AZO classical sol-gel as well as nanoparticle sols and functional layers, also the infrared-optical properties of these coatings have been modeled in order to determine the optical constants as well as the coating thicknesses. Furthermore also commercially available sputtered ITO and AZO coatings have been modeled. The reflectances of these three types of coatings have been modeled on the one hand by using only the Drude model within a self-written program in the software Sage. On the other hand these coatings have been modeled with more complex fitting models within the commercially available software called SCOUT. These more complex fitting models consist of the extended Drude model, a Kim oscillator and an OJL model and they also take the influence of the glass substrates on the reflectances of the applied coatings into account. By using these fitting models, the optical constants of the applied coatings and the coating thicknesses can be obtained. In addition an Ellipsometer has been installed as part of this work and suitable fitting models have been developed. These models can be used for analyzing the Ellipsometer measurements in order to determine the optical constants and the coating thicknesses of the coatings applied. KW - Transparent-leitendes Oxid KW - Sol-Gel-Verfahren KW - Beschichtung KW - Funktionswerkstoff KW - Sol-Gel-Synthese KW - ITO KW - AZO KW - redispergierte Nanopartikel-Sole KW - Drude-Modell KW - sol gel KW - redispersed nanoparticle sol KW - Drude model KW - Charakterisierung KW - Modellierung KW - Physikalische Schicht KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112416 ER - TY - THES A1 - Rydzek, Matthias T1 - Infrarot-optische, elektrische und strukturelle Charakteristika spektralselektiver Funktionsschichten auf der Basis dotierter Metalloxide T1 - Infrared-optical, electrical and structural characteristics of spectrally selective functional coatings based on doped metal oxides N2 - Optisch transparente und elektrisch leitfähige Funktionsschichten auf der Basis dotierter Metalloxid-Halbleiter spielen eine bedeutende Rolle als wärmestrahlungsreflektierende Schichten in der modernen Architektur. Über die im Material vorhandenen freien Ladungsträger wird eine kollektive Anregung im infraroten Spektralbereich ermöglicht, die zu einem Anstieg der Reflektivität der Metalloxidschicht führt. Dies geht einher mit einer Reduktion der Wärmeabstrahlung der Funktionsschicht. Die Motivation der vorliegenden Dissertation lag in der Herstellung, sowie in einer umfassenden Analyse der infrarot-optischen, elektrischen und strukturellen Charakteristika von nasschemisch abgeschiedenen Funktionsschichten auf Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid. Die Prämisse war hierbei, dass die Funktionsschichten einen möglichst hohen Reflexionsgrad, respektive einen geringen thermischen Emissionsgrad im infraroten Spektralbereich aufweisen. Im Rahmen der Arbeit wurden deshalb vorrangig die Einflüsse der Sol-Parameter und der Art der Probenpräparation auf die infrarot-optischen Schichteigenschaften hin untersucht. Hierbei hat sich gezeigt, dass es verschiedene Möglichkeiten gibt, die Eigenschaften der Funktionsschichten im infraroten Spektralbereich zu beeinflussen. Dies kann einerseits bereits bei der Herstellung der Beschichtungslösungen über eine Variation von Parametern wie dem Grad der Dotierung bzw. der Konzentration des Sols erfolgen. Andererseits lassen sich gewünschte infrarot-optische Schichteigenschaften direkt über eine Anpassung der Kristallisationstemperaturen unter Zuhilfenahme geeigneter oxidierender und reduzierender Prozessgase einstellen. Im Verlauf der Optimierung der Probenpräparation konnte zudem gezeigt werden, dass eine Variation der Anzahl der Funktionsschichten und die damit verbundene Veränderung der Schichtdicke maßgebliche Einflüsse auf die infrarot-optischen Eigenschaften hat. Die umfassende optische Charakterisierung der optimierten Proben vom UV über den sichtbaren Spektralbereich bis hin zum IR ergab, dass der Gesamtemissionsgrad eines Glassubstrats durch die Aufbringung eines Mehrschichtsystems deutlich gesenkt werden kann, wobei sich die visuelle Transparenz nur geringfügig ändert. Im Falle des verwendeten Indium-Zinn-Oxids genügt eine vierfache Beschichtung mit einer Dicke von rund 450 nm, um den Emissionsgrad von unbeschichtetem Glas (0.89) auf unter 0.20 zu senken, wobei die visuelle Transparenz mit 0.85 nur um rund 6 % abnimmt. Bei Aluminium-Zink-Oxid ergibt sich ein Optimum mit einer rund 1 µm dicken Beschichtung, bestehend aus 11 Einzelschichten, die den Emissionsgrad der Oberfläche auf unter 0.40 senkt. Die optische Transparenz liegt hierbei mit 0.88 nur geringfügig unter dem unbeschichteten Glas mit einem Wert von 0.91. Neben der ausführlichen Charakterisierung der Einflüsse auf die IR-optischen Schichteigenschaften lag der Fokus der Arbeit auf der Analyse der strukturellen und elektrischen Eigenschaften der optimierten Proben. Mittels REM- und AFM-Aufnahmen konnten Einblicke in die Schichtstruktur und Oberflächenbeschaffenheit der erzeugten Funktionsschichten gewonnen werden. Es hat sich gezeigt, dass bedingt durch dicht beieinanderliegende Kristallite eine geringe Porosität innerhalb der Funktionsschicht entsteht, wodurch eine relativ hohe elektrische Leitfähigkeit gewährleistet ist. Dabei resultiert eine homogene Oberflächenstruktur mit einer geringen Oberflächenrauheit. Die Homogenität der Funktionsschichten, speziell im Hinblick auf eine gleichmäßige Verteilung der maßgeblichen Atome, wurde mit Hilfe von SNMS- Messungen und einem EDX-Element-Mapping verifiziert. Mit Hilfe der Analyse des spezifischen Widerstands der optimierten Funktionsschichten konnte ein Zusammenhang zwischen den infrarot-optischen und elektrischen Schichteigenschaften über die Hagen-Rubens Relation erarbeitet werden. Darüber hinaus wurden an den besten, infrarot-optisch optimierten Proben charakteristische Parameter wie die Bandlückenenergie, die Ladungsträgerdichte und die Ladungsträgerbeweglichkeit ermittelt. Über die Ladungsträgerdichte war es zudem möglich, die spektrale Lage der Plasmawellenlänge zu bestimmen. Basierend auf den ermittelten Werten der optimierten Metalloxidschichten im Bereich der elektronischen Charakterisierung konnte eine Korrelation der infrarot-optischen und elektrischen Schichteigenschaften anhand charakteristischer Punkte im Spektrum der Funktionsschichten erarbeitet werden. Abschließend wurde der Verlauf des spektralen Reflexionsgrads theoretisch modelliert und über eine Parametervariation an den tatsächlich gemessenen Reflexionsgrad der infrarot-optisch optimierten Proben angefittet. Hierbei zeigte sich eine gute Übereinstimmung der in den physikalischen Grundlagen der vorliegenden Arbeit getroffenen Annahmen mit den experimentell ermittelten Werten. N2 - Optically-transparent and electrically-conductive functional coatings based on doped metal oxide semiconductors play a significant role as thermally-reflective coatings. Their collective excitation in the infrared spectral range is enabled via the free charge carriers in the material, which leads to an increase in the metal oxide coating's reflectance. This is concurrent with a reduction in the thermal emittance of the functional coating. Various TCO deposition processes have been established for the majority of applications; the sol-gel process, however, is particularly significant since it is cost-efficient and flexible. The objective of this thesis was to thoroughly analyze the infrared optical, electrical and structural characteristics of functional coatings based on indium tin oxide and aluminium-doped zinc oxide produced by way of wet deposition. The intention was to create functional coatings with the highest possible reflectance, or rather lowest thermal emittance in the infrared spectral range. In this vein, an important aspect of this thesis was to investigate not only the influence of the sol parameters, but also of sample preparation on the infrared optical coating properties. It became evident that there are various ways of influencing the properties of the functional coatings in the infrared spectral range. Firstly, this can be achieved by varying parameters when the coating solutions are produced, such as the degree of doping or the concentration of the sol. Secondly, specific infrared optical coating properties can be directly modified by adjusting the crystallization temperatures with the aid of suitable oxidizing and reducing gases. During the course of optimizing sample preparation it also became apparent that variation in the number of functional coatings and therefore in the thickness of the metal oxide used has a decisive influence on the infrared optical properties. The individual steps involved in the production process were improved throughout the course of numerous parametric studies with respect to achieving the highest possible reflectance in the infrared range. Comprehensive optical characterization of the optimized samples in the spectral range from ultraviolet over the visible and up to the thermal infrared showed that the total emittance of a glass substrate can be clearly reduced by applying a multilayer coating, while the visual transparency is only slightly altered. In the case of the indium tin oxide used, a four-layer coating with a thickness of approximately 450 nm was sufficient to reduce the emittance of the uncoated glass (0.89) to 0.20, while the visual transmittance of 0.85 only deteriorated by about 6 %. In the case of the aluminium-doped zinc oxide used, an optimum was achieved with an approximately 1 µm thick coating comprising 11 individual layers which reduced the surface emittance to less than 0.40. The optical transmittance of 0.88 in this case is only slightly less than the uncoated glass with a value of 0.91. Besides extensively characterizing the influences on IR optical coating properties, this work focused on analyzing the structural and electrical properties of the optimized samples. Insights into the structure and surface composition of the functional coatings produced were gained by way of SEM and AFM. It became evident that densely packed crystallites cause low porosity within the functional coating, which ensures relatively high electrical conductivity. A homogeneous surface structure with low surface roughness results from the relatively small crystallite size (compared to the coating thickness measured) of both metal oxide systems. The homogeneity of the functional coatings, especially with respect to the uniform distribution of the decisive atoms, was verified with the aid of SNMS measurements and EDX elemental mapping. Correlation between the infrared optical and electrical coating properties was successfully shown by analyzing the specific resistance of the optimized functional coatings and then implementing the Hagen-Rubens relation. Moreover, characteristic parameters such as band gap energy, charge carrier density and charge carrier mobility were determined for the best infrared-optically-optimized samples. It was also possible to ascertain the spectral position of the plasma wavelength via the charge carrier density. On the basis of values determined for the optimized metal oxide coatings within the realm of electronic characterization, further correlation between the infrared optical and electrical coating properties became evident due to characteristic points in the spectrum of the functional coatings. To conclude, the curve of spectral reflectance was theoretically modelled and fitted to the measured reflectance of the infrared-optically-optimized samples by way of parameter variation. Good agreement was shown between the hypotheses made within this thesis and the values determined in the experiments. KW - Metalloxide KW - Dotierung KW - Dünne Schicht KW - Funktionswerkstoff KW - Reflexion KW - niedrigemittierende Beschichtung KW - Zinn-dotiertes Indiumoxid KW - Aluminium-dotiertes Zinkoxid KW - low-emissivity coating KW - indium-tin oxide KW - aluminum-zinc-oxide KW - Transparent-leitendes Oxid KW - FT-IR-Spektroskopie KW - Infrarot KW - Emissionsvermoegen KW - Sol-Gel-Verfahren Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71504 ER -