TY - THES A1 - Appel, Markus T1 - Untersuchungen zur 2H/1H- und 13C/12C-Isotopenfraktionierung bei der Biogenese von Aromastoffen T1 - Investigation of 2H/1H- and 13C/12C-isotopic fractionation during biogenesis of flavour compounds N2 - Für die Authentizitätsbewertung achiraler Aromastoffe ist die gaschromatographische Isotopenverhältnismessung mittels massenspektrometrischer Analyse ein etabliertes Verfahren. Diese Technik ermöglicht es, über geeignete Datenbanken authentischer Referenzproben gesicherte Aussagen hinsichtlich deren Herkunft aus natürlicher oder synthetischer Quelle zu treffen. Zunehmend ins Interesse rückt allerdings auch die Frage, ob es mittels Techniken der Stabilisotopenanalytik ebenso möglich ist, das breite Feld der legislativ als „natürlich“ deklarierten Aromastoffe analytisch weiter in deren Herkunft aus biotechnologischer oder natürlicher („ex plant“) Quelle aufzutrennen. Zwar kann dieser Fragestellung prinzipiell über die Erweiterung bestehender Stabilisotopen-Datenbanken mit authentischen Proben nachgegangen werden, sie scheitert jedoch häufig an der limitierten Verfügbarkeit authentischer biotechnologischer Referenzen oder der eingeschränkten Kenntnis über die der Produktion „natürlicher“ Aromastoffe zugrundeliegenden Verfahrenstechniken. Eine mögliche Vorgehensweise zur Umgehung dieses Sachverhalts stellt daher die in Anlehnung an beschriebene biotechnologische Verfahren im Labormaßstab durchgeführte Produktion ausgewählter und somit auch authentischer Referenz-Aromastoffe dar. Diese Methode hat zudem den Vorteil, dass gegebenenfalls zusätzliche Informationen über mögliche Isotopenfraktionierungen in solchen Systemen ermittelt werden können, welche sich nicht nur zur Authentizitätsprüfung als nützlich erweisen können, sondern auch zur stetig wachsenden Grunderkenntnis über Isotopenfraktionierungen in biologischen Systemen beitragen. Ziel der vorliegenden Arbeit war es daher, der geschilderten Fragestellung bezüglich ausgewählter Aromastoffe aus den Gruppen der C6-Aldehyde und -Alkohole („Grünnoten“) sowie der Gärungsalkohole nachzugehen. Zu diesem Zweck erfolgten zum einen im Labormaßstab die biogenetische Bildung von C6-Aldehyden und -Alkoholen ausgehend von den ungesättigten Fettsäuren Linol- und Linolensäure, ferner wurden parallel Edukte, Intermediate und Produkte isoliert und hinsichtlich ihrer Stabilisotopengehalte durch Bestimmung der Delta-2H(V-SMOW)- und Delta-13C(V-PDB)-Werte untersucht. Zum anderen sind auf fermentativem Wege ausgehend von unterschiedlichen Kohlenhydratquellen die Gärungsalkohole 2-Phenylethanol und 2-Methyl-1-propanol dargestellt worden. Des weiteren galt es, die bei den Gärungsalkoholen resultierende Datenlage dahingehend zu prüfen, ob sich diese über eine Korrelation der Delta-2H(V-SMOW)- und Delta-13C(V-PDB)-Werte dazu eignet, eine Authentizitätsbewertung dieser Aromastoffe hinsichtlich natürlicher oder synthetischer Herkunft zu ermöglichen. N2 - For the authenticity assessment of achiral flavor substances gas chromatography-isotope ratio mass spectrometry (HRGC-IRMS) is an established method. Using authentic reference data, this technique allows the differentiation between a “natural” or synthetic origin. The problem, however, to distinguish biotechnologically produced “natural” flavors from other “natural” ones, e.g. “ex plant” origin, is still unsolved. A suitable approach would be to expand the already existing stable isotope databases using authentic samples. However, this often fails due to the limited availability of authentic biotechnological references or restricted knowledge about the production processes for “natural” flavors. An appropriate alternative is the controlled production of authentic reference flavors according to published biotechnological processes on a laboratory scale. With this strategy additional information about eventual isotopic fractionations can be obtained, which is not only useful for authenticity assessment, but also to extend our basic knowledge about isotopic discriminations in biological systems. The aim of the present study was therefore to elucidate this question regarding selected flavor substances from the groups of the C6-aldehydes and -alcohols (“green notes”), as well as some fermentation alcohols. For this purpose, the biogenetic production of C6-aldehydes and -alcohols from the unsaturated fatty acids linoleic and linolenic acid was realized, and, in parallel, educts, intermediates and products were isolated and analysed as to their delta-2H(V-SMOW)- and delta-13C(V-PDB)-values. In addition, the fermentative production of 2-phenylethanol and 2-methyl-1-propanol was performed by using different sources of carbohydrates. Regarding these fermentation alcohols, the resulting data should also be tested, whether the correlation of the delta-2H(V-SMOW)- and delta-13C(V-PDB)-values enables the authenticity assessment of the flavor substances towards their synthetic or “natural” origin. KW - Aroma KW - Authentizität KW - Grünnoten KW - Gärungsalkohole KW - Isotopenverhältnis-Massenspektrometrie KW - flavour KW - green notes KW - fermentation alcohols KW - authenticity KW - isotope ratio mass spectrometry Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-28426 ER - TY - THES A1 - Raab, Thomas T1 - Untersuchungen zur Erdbeerfruchtreifung : Biosynthese von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon und Enzymaktivitäten während des Reifungsprozesses T1 - Investigations on strawberry fruit ripening - Biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone and enzymatic activities within the ripening process N2 - Die Fruchtreifung stellt einen hochkomplexen Prozess dar, der durch eine Reihe von biochemischen und physiologischen Veränderungen gekennzeichnet ist. Dies umfasst bedeutende Veränderungen von Textur, Farbe sowie die Bildung von geschmacks- und geruchsaktiven Verbindungen. Die vorliegende Arbeit präsentiert neue Erkenntnisse zur Biosynthese von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon (Furaneol®, HDMF), einer Schlüssel-Aromakomponente der Erdbeere (Fragaria x ananassa). Daneben lieferten die durchgeführten Versuche den Nachweis einer Reihe enzymatischer Aktivitäten in der Erdbeerfrucht und beleuchteten deren Entwicklung im Verlauf der Erdbeer-Fruchtreifung. Zum ersten Mal wurde ein Protein aus Erdbeerfrüchten isoliert, partiell sequenziert und seine Beteiligung an der enzymatischen Bildung von HDMF während der Fruchtreifung nachgewiesen. N2 - Fruit ripening represents a highly complex process, characterized by a series of biochemi-cal and physiological changes. This comprises significant changes in texture and colour as well as production of odor- and flavour-active compounds. The present work reveals new insight into the biosynthesis of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®, HDMF), a key flavour compound of strawberry (Fragaria x ananassa). For the first time, a protein active in the enzymatic formation of this compound during strawberry fruit ripening was isolated from the fruit, partially sequenced and characterised. KW - Erdbeere KW - Fruchtreife KW - Furaneol KW - Biosynthese KW - Furaneol KW - Chinon-oxidoreduktase KW - Erdbeere KW - Aroma KW - HDMF KW - Furaneol KW - quinone oxidoreductase KW - strawberry KW - flavor KW - HDMF Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8640 ER - TY - THES A1 - Hauck, Tobias T1 - Zuckerphosphate als Vorläufer von 4-Hydroxy-3(2H)-furanonen - Biochemische Transformation durch die Hefe Zygosaccharomyces rouxii und chemische Bildung unter physiologischen Bedingungen T1 - Sugar phosphates as precursors of 4-hydroxy-3(2H)-furanones - biochemical transformation by the yeast Zygosaccharomyces rouxii and chemical formation under physiological conditions N2 - In der vorliegenden Arbeit werden instrumentell-analytische Studien zur enzymatischen und chemischen Bildung von 4-Hydroxy-2,5-dimethyl-3(2H)-furanon (HDMF) und 4-Hydroxy-5-methyl-3(2H)-furanon (HMF) – zwei wichtigen Aromakomponenten zahl-reicher Früchte und verarbeiteter Lebensmittel – vorgestellt. Die Studien demonstrieren erstmals die Bildung dieser Verbindungen aus Zuckerphosphaten unter physiologischen Reaktionsbedingungen. Ein Schwerpunkt der Arbeiten lag dabei auf der Bildung von HDMF aus D-Fructose-1,6-diphosphat (Fru-1,6-dP) durch den Hefestamm Zygosaccharomyces rouxii. Der Zusatz von 1-13C-Fru-1,6-dP bzw. 13C6-D-Glucose zum Nährmedium der Hefe Z. rouxii zeigte, dass ausschließlich exogen zugesetztes Fru-1,6-dP durch die Hefe zu HDMF transformiert wird. Untersuchungen, in denen der Einfluss verschiedener Wachstumsbedingungen auf die HDMF-Bildung durch Z. rouxii getestet wurde, zeigten bezüglich der HDMF-Bildung ein pH-Optimum bei pH 5.1 sowie eine maximale Produktivität der Zellen bei einer NaCl-Konzentration von 20%. Mittels einer neu entwickelten cKZE-Methode wurde für durch Z. rouxii gebildetes HDMF eine Enantiomerenanreicherung von 27%ee nachgewiesen, was eine enantioselektive Biosynthese durch Enzymsysteme der Hefe impliziert. Als Grundvoraussetzung für den Nachweis einer Enantiomerenanreicherung im HDMF-Molekül stellte sich ein schwach-saurer pH-Wert des wässrigen Mediums heraus. Dies konnte durch Ermittlung der Tautomerisierungsgeschwindigkeit des HDMF-Moleküls mittels 1H-NMR-Spektroskopie belegt werden. Anhand von HPLC-MS/MS-Analysen wurde die Bildung von HMF in zellfreien cytosolischen Rohproteinextrakte aus Z. rouxii, welche mit Fru-1,6-dP und Nicotinamidadenindinucleotiden (NAD, NADH, NADP, NADPH) inkubiert worden waren, nachgewiesen. In Substratstudien wurde HMF nach Applikation von Fru-1,6-dP, D-Fructose-6-phosphat, D-Glucose-6-phosphat, 6-Phosphogluconsäure, D-Ribose-5-phosphat (Rib-5-P) und D-Ribulose-1,5-diphosphat an cytosolische Proteinextrakte nachgewiesen. Die für die Transformationen der Hexosephosphate zu D-Ribulose-5-phosphat (Ribu-5-P) benötigten Enzyme Fructose-1,6-diphosphatase, Phosphohexose-Isomerase, Glucose-6-phosphat-Dehydrogenase und 6-Phosphogluconsäure-Dehydrogenase konnten mittels spezifischer Enzymassays in den cytosolischen Extrakten nachgewiesen werden. Gebildetes Ribu-5-P wird im Folgenden spontan in HMF umgelagert (> 1%). Die Inkubation von Phosphoribose-Isomerase mit Rib-5-P in Gegenwart von o-Phenylendiamin (o-PD) führte zur Bildung von 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin, das anhand seiner UV-, MS- und NMR-Daten eindeutig identifiziert wurde. Daraus konnte die Bildung von 4,5-Dihydroxy-2,3-pentandion (DPD) in den Reaktionsansätzen abgeleitet werden, was durch die Synthese der entsprechenden deuterierten bzw. unmarkierten Alditolacetat-Derivate und anschließende HRGC-MS-Analyse abgesichert wurde. Durch Inkubation von 1-13C-Ribu-5-P bzw. 5-13C-Ribu-5-P mit o-PD und HPLC-MS/MS-Analyse der entstandenen Quinoxalinderivate konnte gezeigt werden, dass die Methylgruppe des DPD-Moleküls infolge einer nicht-enzymatischen Phosphat-Eliminierung gebildet wird. Nach Applikation von o-PD an reife Tomaten wurde mittels HPLC-MS/MS ebenfalls 2-Methyl-3-(1,2-dihydroxyethyl)-quinoxalin detektiert. Dieses Ergebnis impliziert ein genuines Vorkommen von DPD in Tomaten, in deren Aromaextrakten auch HMF nachgewiesen wurde. Somit ist in natürlichen Systemen ebenfalls von einer HMF-Bildung über diese Zwischenverbindung auszugehen. Anhand von HPLC-UV-MS/MS-Analysen wurde eine selektive Bildung von HDMF aus Fru-1,6-dP in Gegenwart von NADH unter milden Reaktionsbedingungen nachgewiesen. Durch Inkubation von 1-13C-Fru-1,6-dP mit [4R,S-2H2]-NADH und anschließender HRGC-MS-Analyse des gebildeten isotopen-markierten HDMF konnte gezeigt werden, dass HDMF infolge eines nicht-enzymatischen Hydrid-Transfers von NADH auf eine aus Fru-1,6-dP abgeleitete Zwischenverbindung gebildet wird. Das Hydrid-Ion wird hierbei selektiv auf C-5 oder C-6 des Kohlenhydratgrundgerüstes des Zuckerphosphates übertragen. Der Zusatz von o-PD und Fru-1,6-dP zum Z. rouxii-Nährmedium und anschließende HPLC-DAD-Analyse führte zur Detektion von drei Quinoxalinderivaten. Diese wurden anhand ihrer MS/MS-Daten und NMR-Spektren als phosphorylierte Quinoxalinderivate identifiziert, aus denen sich die Bildung von 2-Hexosulose-6-phosphat, 1-Deoxy-2,3-hexodiulose-6-phosphat und 1,4-Dideoxy-2,3-hexodiulose-6-phosphat in den Nährmedien ableiten ließ. Somit gelang erstmals der Beweis der Bildung von 1-Deoxy-2,3-hexodiulose-6-phosphat im Nährmedium, einem vielfach postulierten, aber bislang nicht nachgewiesenen Intermediat der HDMF-Bildung aus Fru-1,6-dP. Aufgrund der enantioselektiven Bildung von HDMF durch die Hefen wird daher bei der HDMF-Biosynthese durch Z. rouxii von einer Kombination aus nicht-enzymatischen Reaktionsschritten und einer durch Oxidoreduktasen der Hefezellen vermittelten Reduktion ausgegangen. N2 - The present work represents instrumental-analytical studies on the enzymatic and chemical formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) and 4-hydroxy-5-methyl-3(2H)-furanone (HMF), two important flavour compounds in many fruits and processed food. The performed studies demonstrate for the first time the formation of these compounds from carbohydrate phosphates under physiological reaction conditions. Of special interest during these studies was the formation of HDMF from D-fructose-1,6-diphosphate (Fru-1,6-dP) by the yeast Zygosaccharomyces rouxii. The addition of 1-13C-D-Fru-1,6-dP and 13C6-D-glucose to the nutrient medium of Z. rouxii revealed the exclusive formation of HDMF by Z. rouxii from exogenously supplied Fru-1,6-dP. Studies dealing with the formation of HDMF by Z. rouxii under various culture conditions showed an optimal pH value of 5.1 with regard to the yield of HDMF and a maximum formation per yeast cell at 20 % sodium chloride in the nutrient medium. By means of a newly developed cKZE-method for HDMF formed by Z. rouxii an enantiomeric excess value of 27 % ee was demonstrated, implying an enantioselective biosynthesis catalysed by enzymes of the yeast. A slightly acidic pH value of the aqueous medium turned out to be essential for the detection of an enantiomeric enrichment in the HDMF molecule. This was unequivocally proved by the determination of the tautomerization velocity of the HDMF molecule by 1H-NMR spectroscopy. The formation of HMF in cell-free cytosolic protein extracts obtained from Z. rouxii incubated with Fru-1,6-dP and nicotinamide adenine dinucleotides (NAD, NADH, NADP and NADPH) was detected by means of HPLC-MS/MS analysis. HMF was formed from Fru-1,6-dP, D-fructose-6-phosphate, D-glucose-6-phosphate, 6-phosphogluconate, D-ribose-5-phosphate (Rib-5-P) and D-ribulose-1,5-diphosphate after application to cytosolic protein extracts. Specific enzyme assays revealed activity of fructose-1,6-diphosphatase, phosphohexose isomerase, glucose-6-phosphate dehydro-genase and 6-phosphogluconate dehydrogenase in the cytosolic extracts, enzymes required for the transformation of the hexose phosphates to D-ribulose-5-phosphate (Ribu-5-P). Formed Ribu-5-P is spontaneously converted to HMF (> 1 %). Incubation of ribosephosphate isomerase with Rib-5-P in presence of o-phenylenediamine (o-PD) led to the formation of 2-methyl-3-(1,2-dihydroxyethyl)-quinoxaline, which was unequivocally identified by its UV-, MS- and NMR-data. Thus, the formation of 4,5-dihydroxy-2,3-pentanedione (DPD) in the incubation mixtures could be deduced. The formation of this compound was ensured by its conversion to the respective deuterium labelled or unlabelled alditol acetate derivatives and subsequent HRGC-MS analysis. By incubation of 1-13C-Ribu-5-P as well as 5-13C-Ribu-5-P with o-PD and analysis of the respective quinoxaline derivatives by means of HPLC-MS/MS analysis we demonstrated a formation of the methyl-group in the DPD molecule in consequence of a non-enzymatic phosphate elimination. Application of o-PD to ripe tomatoes led to the detection of 2-methyl-3-(1,2-dihydroxyethyl)-quinoxaline as well, using HPLC-MS/MS analysis, implying the genuine occurrence of DPD in tomatoes. Since HMF was also detected in aroma extracts obtained from tomatoes of the same sample HMF formation in natural systems via DPD is quite possible as well. A selective chemical formation of HDMF from Fru-1,6-dP in the presence of NADH under mild reaction conditions was detected by means of HPLC-UV-MS/MS analysis. The incubation of 1-13C-Fru-1,6-dP with [4R,S-2H2]-NADH followed by HRGC-MS analysis of the formed isotopically labelled HDMF revealed, that HDMF is produced in consequence of a non-enzymatic hydride-transfer from NADH to an unknown intermediate derived from Fru-1,6-dP. The hydride-ion is selectively transferred to C-5 or C-6 of the carbohydrate skeleton of the sugar phosphate. The addition of o-PD and Fru-1,6-dP to a Z. rouxii culture medium and subsequent HPLC-DAD analysis revealed the formation of three quinoxaline derivatives. By means of their MS/MS-data and NMR-spectra these compounds were identified as phosphorylated quinoxaline derivatives derived from 2-hexosulose-6-phosphate, 1-deoxy-2,3-hexodiulose-6-phosphate and 1,4-dideoxy-2,3-hexodiulose-6-phosphate in the culture medium. Thus, for the first time the chemical formation of 1-deoxy-2,3-hexodiulose-6-phosphate in the culture medium was demonstrated, a generally expected but up to now never identified intermediate in the formation pathway of HDMF from Fru-1,6-dP. Due to the enantioselective formation of HDMF by the yeast an HDMF biosynthesis by Z. rouxii consisting of non-enzymatic reaction steps and a reduction mediated by oxidoreductases of the yeast cells was anticipated. KW - Zygosaccharomyces rouxii KW - Furanone KW - Biosynthese KW - Aromastoff KW - Furanon KW - Zuckerphosphat KW - Zygosaccharomyces KW - Aroma KW - Dicarbonyl KW - furanone KW - sugar phosphate KW - Zygosaccharomyces KW - flavour KW - dicarbonyl Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-5871 ER - TY - THES A1 - Wein, Martina T1 - Biosynthese und Metabolismus von 2,5-Dimethyl-4-hydroxy-3(2H)-furanon in Erdbeeren T1 - Biosynthesis and Metabolism of 2,5-Dimethyl-4-hydroxy-3(2H)-furanone in Strawberries N2 - Die vorliegende Arbeit präsentiert neue Erkenntnisse zur Biosynthese von 2,5-Dimethyl-4-hydroxy-3(2H)-furanon (DMHF) und 2,5-Dimethyl-4-methoxy-3(2H)-furanon (DMMF), zwei wichtigen Aromakomponenten in Erdbeeren. Potentielle, mit stabilen Isotopen markierte Vorläufersubstanzen wurden an Erdbeeren appliziert und drei Tage bei Raumtemperatur inkubiert. Der Nachweis über den erfolgreichen Einbau erfolgte mittels Gaschromatographie-Massenspektrometrie. Anhand der Massenspektren von DMHF und DMMF, die aus den behandelten Erdbeeren mittels Festphasenextraktion isoliert wurden, konnte der Markierungsgrad der Verbindungen ermittelt werden und somit Rückschlüsse über die Effizienz der Metabolisierung der applizierten Zucker zu den beiden Furanonen DMHF und DMMF gezogen werden. Als mögliche Ausgangsstoffe dienten unterschiedlich markierte D-Glucose und D-Fructose, sowie Desoxyzucker, da diese als direkte Vorläufersubstanzen von DMHF und DMMF diskutiert werden. Isotopenmarkierte Desoxy-D-glucose oder Desoxy-D-fructose sind kommerziell nicht erhältlich, weshalb die Verbindungen [1-13C]-1-Desoxy-D-fructose, [6-2H1]-6-Desoxy-D-glucose und [5,6,6,6-2H4]-6-Desoxyhexulose-1-phosphat zuerst synthetisiert werden mussten. Nach Applikation der Desoxyzucker wurde keine Erhöhung des Markierungsgrades an stabilen Isotopen gegenüber dem natürlichen Isotopenverhältnis festgestellt. Somit können 6-Desoxy-D-glucose, 1-Desoxy-D-fructose und 6-Desoxy-D-fructose-1-phosphat als Prekursoren von DMHF und DMMF ausgeschlossen werden. Als gute Vorläufersubstanzen erwiesen sich D-Glucose und D-Fructose. Markierungen (13C und 2H) an Position C-1 oder C-6 der beiden Verbindungen wurden sowohl in DMHF als auch in dessen Methoxyderivat DMMF detektiert, wobei die Applikation von D-Fructose im Gegensatz zur D-Glucose einen höheren Markierungsgrad der Zielverbindungen zur Folge hatte. Durch den Einsatz positionsspezifisch markierter D-Glucose (2H-Markierung an Position C-1, C-2 oder C-4) sollten Aufschlüsse über den Metabolisierungsmechanismus gewonnen werden. Die Markierung der D-[2-2H]Glucose befand sich wie die der D-[1-2H]Glucose in den Methylgruppen der Furanone, was nur durch eine intramolekulare Verschiebung von C-2 nach C-1 erklärbar ist. Diese wurde bei der Glucosephosphatisomerase-katalysierten Umwandlung von D-Glucose-6-phosphat zu D-Fructose-6-phosphat beobachtet. Somit muss D-Glucose bei der Biosynthese von DMHF und DMMF zuerst in diese Intermediate überführt werden. Im Gegensatz zu an Position C-2 markierter D-Glucose ging das Proton an Position C-4 im Laufe der Metabolisierung verloren. Demzufolge findet der in der Natur verbreitete Desoxygenierungsmechanismus von Monosacchariden nicht statt und schließt die Beteiligung von Desoxyzuckern an der Biosynthese von DMHF und DMMF gänzlich aus. Nach Einsatz von uniform markierter D-Fructose konnte sechsfach markiertes DMHF und DMMF identifiziert werden, was durch den Einbau der intakten Kohlenstoffkette zu erklären ist. Dieser Befund und weitere Untersuchungen mit verschiedenen Glykolyse-regulierenden Substanzen deuteten darauf hin, dass die Furanone dem zentralen Kohlenhydratstoffwechsel, der Glykolyse, entspringen. Vor der Aldolase-katalysierten Spaltung in zwei C3-Einheiten muss jedoch eine Abzweigung erfolgen, da sonst die Kohlenstoffkette nicht unverändert vorliegen könnte. Im zweiten Teil der Arbeit ist erstmals mit Hilfe von molekularbiologischen Techniken die vollständige cDNA einer O-Methyltransferase (OMT) aus Erdbeeren isoliert worden. Hierfür wurde mRNA aus reifenden Erdbeeren extrahiert und eine cDNA Bibliothek hergestellt. Diese wurde mit einer OMT-spezifschen Sonde durchmustert, welche durch PCR mit degenerierten Primern synthetisiert worden war. Nach mehreren Vereinzelungs-Zyklen konnte die vollständige cDNA einer O-Methyltransferase (STOMT, Strawberry OMT) erhalten werden. Northern-Analysen ergaben, dass die entsprechende RNA ausschließlich in den verschiedenen Reifestadien der Frucht akkumuliert, mit den höchsten Transkriptmengen in der rot-werdenden und reifen Frucht. In anderen Gewebeteilen wie Wurzel, Blätter, Stängel und Blüte konnte keine STOMT-RNA nachgewiesen werden. Das korrespondierende Protein zeigte hohe Homologien zu Kaffeesäure-OMTs aus Weidengewächsen der Gattung Populus. Nach erfolgreicher, heterologer Expression von STOMT in E. coli wurde die Substratspezifität des Enzyms untersucht, dessen Temperaturoptimum bei 30°C lag. Alle eingesetzten Substrate mit phenolischem Grundgerüst, wie Brenzcatechin, Kaffeesäure, Kaffeeoyl-CoA und 3,4-Dihydroxybenzaldehyd, aber auch das Furanonderivat DMHF wurden von der rekombinanten O-Methyltransferase umgesetzt. Als bestes Substrat erwies sich 3,4-Dihydroxybenzaldehyd, das, im Gegensatz zu dessen Methylierungsprodukt Vanillin, bisher in Erdbeeren nicht nachgewiesen werden konnte. Kaffeesäure wurde ebenfalls effektiv methyliert, worin vermutlich die Hauptaufgabe von STOMT in der Pflanze liegt. Die Methylierung von Kaffeesäure oder 5-Hydroxyferulasäure ist ein wichtiger Prozess in der Entstehung von Lignin. Die Tatsache, dass Erdbeeren teilweise in den Leitbündeln und verstärkt in den Achenen lignifiziert sind, erklärt das Vorhandensein eines solchen Enzyms. DMHF, das als Dienol-Tautomer eine aromatische Struktur mit Hydroxylgruppen aufweist und somit strukturelle Ähnlichkeiten zu phenolischen Verbindungen zeigt, wurde ebenfalls von STOMT als Substrat akzeptiert. Die Bildung von DMMF, dem Methoxyderivat von DMHF erfolgte vergleichsweise langsam, war aber eindeutig auf die Methyltransferase-Aktivität zurückzuführen. STOMT ist aufgrund des Expressionsmusters als fruchtspezifisch und reifeinduziert einzustufen. Primäre Funktion ist vermutlich zu Beginn der Fruchtreifung die Lignifizierung der Leitbündel und später die der Achenen. Gleichzeitig scheint STOMT wesentlich an der Bildung der Aromastoffe DMMF und Vanillin in Erdbeeren beteiligt zu sein. N2 - The present work reveals new insight in the biosynthesis of 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF) and 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF), two important flavor compounds in strawberries. Isotopically labeled precursors were applied to detached strawberries and incubated for three days at room temperature. The successful incorporation of the isotopes was determined by gas chromatography-mass spectroscopy. On the basis of the mass spectra of DMHF and DMMF, isolated from treated strawberries by solid phase extraction, the ratio of labeled and unlabeled compounds was determined. Thus, the conversion of sugars to the furanones DMHF and DMMF could be analyzed in regard to efficiency of metabolism. Differently labeled D-glucose, D-fructose and deoxysugars were used as they are considered to be good precursors of DMHF and DMMF. [1-13C]-1-Deoxy-D-fructose, [6-2H1]-6-deoxy-D-glucose and [5,6,6,6-2H4]-6-deoxyhexulose-1-phosphate had to be synthesized first since these isotopically labeled deoxysugars are not commercially available. After application of the labeled deoxysugars, the ratio of stable isotopes did not change in comparison with the natural isotopic ratio. As a consequence 6-deoxy-D-glucose, 1-deoxy-D-fructose and 6-deoxyhexulose-1-phosphate can be ruled out as precursors of DMHF and DMMF. D-Glucose and D-fructose were converted efficiently to the furanones. The isotopic label (13C and 2H) from position C-1 and C-6 of both carbohydrates was detected in DMHF and its derivative DMMF. In contrast to D-glucose, D-fructose was metabolized more efficiently to the target molecules as the furanones showed a higher degree of labeling. The use of D-glucose labeled at different positions should provide information about the mechanism of the biosynthesis. The label of D-[2-2H]glucose as well as that of D-[1-2H]glucose was recovered in the methyl group of the furanones. This observation was explained by an intra molecular isotope shift from position C-2 to C-1 which was observed in the course of the conversion of D-glucose-6-phosphate to D-fructose-6-phosphate mediated by phosphohexose isomerase. Consequently, D-glucose has to be transformed into these intermediates prior to the formation of DMHF and DMMF. In contrast to D-glucose, which was labeled at position C-2, the label at position C-4 was lost during the transformation. Therefore, the natural mechanism of deoxygenation might not occur during the biosynthesis of DMHF and DMMF. After application of D-[U-13C6]fructose the incorporation of six 13C atoms into DMHF and DMMF was detected. This implies that the complete carbon skeleton is incorporated. These findings and additional studies with different regulatory substances of the glycolysis indicated that the central metabolism of carbohydrates (glycolysis) is involved in the biosynthesis of furanones. Prior to the final cleavage into two C3-fragments by aldolase, another pathway has to branch off, as otherwise the skeleton can not remain unchanged. In the second part of the thesis the complete cDNA of a O-methyltransferase from strawberry was isolated by the means of molecular techniques. First, mRNA was extracted from turning strawberries to construct a cDNA library. An OMT specific fragment, synthesized by PCR with degenerated primers, was used as probe in order to screen the cDNA library. After few cycles of separation a complete cDNA coding for a putative O-methyltransferase (STOMT, strawberry OMT) was obtained. Northern analysis revealed high abundance in the different stages of fruit ripening while highest RNA levels were found in turning and ripe fruit. On the contrary, there were no STOMT-RNA transcripts in other tissue such as root, leaf, petiole and flower. The corresponding protein showed high homology to caffeic acid OMTs from Salicacea (Populus). STOMT was successfully expressed in E. coli in order to determine the substrate specificity. The enzyme showed highest activity at 30°C. All tested phenolic compounds such as catechol, caffeic acid, caffeoyl CoA and protocatechuic aldehyde as well as the furanone derivative DMHF were accepted by the recombinant O-methyltransferase. STOMT converted most rapidly protocatechuic aldehyde, which has not been detected in strawberry yet, to its methylated counterpart vanillin. Caffeic acid was also accepted to a high degree, which is probably the main function in strawberry. The methylation of caffeic acid and 5-hydroxyferulic acid is an important process in the formation of lignin. The fact that the vascular bundles contain lignin and the achenes are strongly lignified explains the presence of such an enzyme in strawberry. The dienolic tautomer of DMHF exhibiting an aromatic structure with two hydroxy groups shows structural homology to phenolic compounds. Therefore, DMHF was accepted as substrate by STOMT. Although the conversion proceeds quite slowly, unequivocally the methoxy derivative descends from DMHF by OMT activity. In accordance with its expression pattern in strawberry, STOMT is fruit specific and induced during ripening. In the course of the maturation, the primary function of STOMT is probably the lignification of the vascular bundles in the beginning and later that of the achenes. On the other hand, STOMT seems to be substantially involved in the biosynthesis of the flavor compounds DMMF and vanillin, too. KW - Erdbeere KW - Naturidentischer Aromastoff KW - Furaneol KW - Biosynthese KW - Stoffwechsel KW - 2 KW - 5-Dimethyl-4-hydroxy-3(2H)-furanon KW - 2 KW - 5-Dimethyl-4-methoxy-3(2H)-furanon KW - Furaneol KW - Erdbeeren KW - Methylierung KW - Biosynthese KW - Aroma KW - 2 KW - 5-Dimethyl-4-hydroxy-3(2H)-furanone KW - 2 KW - 5-Dimethyl-4-methoxy-3(2H)-furanone KW - Furaneol KW - Strawberry KW - Methylation KW - Biosynthesis KW - Flavor Y1 - 2001 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-1182059 ER -