TY - THES A1 - Ganesan, Jayavarshni T1 - The role of microRNA-378 in cardiac hypertrophy T1 - Untersuchungen zur Rolle der MikroRNA-378 bei kardialer Hypertrophie N2 - MicroRNAs are endogenous ≈22 nt long non coding RNA molecules that modulate gene expression at the post transcriptional level by targeting mRNAs for cleavage or translational repression. MicroRNA-mRNA interaction involves a contiguous and perfect pairing within complementary sites usually in the 3’ UTR of the target mRNA. Heart failure is associated with myocyte hypertrophy and death, due to compensatory pathological remodeling and minimal functional repair along with microRNA deregulation. In this study, we identified candidate microRNAs based on their expression strength in cardiomyocytes and by their ability to regulate hypertrophy. Expression profiling from early and late stages of heart failure showed several deregulated microRNAs. Of these microRNAs, miR-378 emerged as a potentially interesting microRNA that was highly expressed in the mouse heart and downregulated in the failing heart. Antihypertrophic activity of miR-378 was first observed by screening a synthetic miR library for morphologic effects on cardiomyocytes, and validated in vitro proving the tight control of hypertrophy by this miR. We combined bioinformatic target prediction analysis and microarray analysis to identify the targets of miR-378. These analyses suggested that factors of the MAP kinase pathway were enriched among miR-378 targets, namely MAPK1 itself (also termed ERK2), the insulin-like growth factor receptor 1 (IGF1R), growth factor receptor bound protein 2 (GRB2) and kinase suppressor of ras 1 (KSR1). Regulation of these targets by miR-378 was then confirmed by mRNA and protein expression analysis. The use of luciferase reporter constructs with natural or mutated miR-378 binding sites further validated these four proteins as direct targets of miR-378. RNA interference with MAPK1 and the other three targets prevented the prohypertrophic effect of antimiR-378, suggesting that they functionally relate to miR-378. In vivo restoration of disease induced loss of miR-378 in a pressure overload mouse model of hypertrophy using adeno associated virus resulted in partial attenuation cardiac hypertrophy and significant improvement in cardiac function along with reduced expression of the four targets in heart. We conclude from these findings that miR-378 is an antihypertrophic microRNA in cardiomyocytes, and the main mechanism underlying this effect is the suppression of the MAP kinase-signaling pathway on four distinct levels. Restoration of disease-associated loss of miR-378 through cardiomyocyte-targeted AAV-miR-378 may prove as an effective therapeutic strategy in myocardial disease. N2 - MicroRNAs sind ca. 22 Nukleotide lange endogene, nicht-kodierende RNA-Moleküle, die die Expression von Genen posttranskriptionell regulieren, indem sie den Abbau der Ziel-mRNA herbeiführen oder deren Translation hemmen. Die Interaktion von microRNA und mRNA erfolgt durch perfekt komplementäre Bindung in der 3’-untranslatierten Region der Ziel-mRNA. Eine Deregulation der Expression verschiedener microRNAs lässt sich bei Herzinsuffizienz beobachten. Im insuffizienten Herzen laufen kompensatorische pathologische Remodellingprozesse ab und es kommt unter anderem zu Hypertrophie und Apoptose von Kardiomyozyten. Im Rahmen dieser Arbeit haben wir Kandidaten-microRNAs nach folgenden Kriterien identifiziert: 1) Expr e s s ions s t ä rke in Ka rdiomyozyt en, 2) Fähigke i t zur Regul a t ion von Kardiomyozytenhypertrophie im Screening einer synthetischen microRNA-Bibliothek auf Kardiomyozytengröße und 3) Regulation ihrer Expression in frühem und späten Stadium eines murinen Herzinsuffizienzmodells. Aus den resultierenden Kandidaten-microRNAs wurde im folgenden miR-378 näher untersucht. MiR-378 war im gesunden Mausherz stark exprimiert. Die Expression nahm bei Herzinsuffizienz ab. Weiterhin hatte die Überexpression von miR-378 in neonatalen Kardiomyozyten einen antihypertrophen Effekt. Im Gegenzug führte die Expression von antimiR-378 zu einer verstärkten Hypertrophie. Zur Target-Suche wurden zum einen bioinformatische Vorhersage-Datenbanken verwendet und zum anderen ein Microarray durchgeführt. Diese Analysen zeigten eine Anreicherung von Faktoren des MAP-Kinase- Signalweges: Mitogen-aktivierte Proteinkinase 1 (MAPK1, auch als ERK2 bezeichnet), Insulinähnlicher Wachstumsfaktorrezeptor 1 (IGF1R), Wachstumsfaktorbindeprotein 2 (GRB2) und Kinasesuppressor von Ras 1 (KSR1). Die Regulation dieser Targets durch miR-378 wurde durch Bestimmung der mRNA- und Proteinexpression nach Überexpression bzw. Inhibition von miR-378 bestätigt. Durch Luziferaseassays mit Reporterkonstrukten, die jeweils die exakten oder mutierte Bindungsstellen der vier Targets enthielten, konnte gezeigt werden, dass die mRNAs der vier Faktoren direkte Targets von miR-378 darstellen. Durch siRNA-mediierte Herabregulation der Zielproteine konnte der prohypertrophe Effekt von antimiR-378 inhibiert werden. Daraus lässt sich schließen, dass der Hypertrophie-Phänotyp direkt auf miR-378 zurückzuführen ist. Schließlich wurde der Effekt von miR-378 im murinen Herzinsuffizienzmodell (Konstriktion der Aorta, TAC) untersucht. TAC führte zu einer Abnahme der Expression von miR-378 im Herzen. Durch Adenoassoziierten Virus (AAV) vermittelte exogene Expression von miR-378 wurde das Expressionslevel des gesunden Herzens im TAC-Modell wiederhergestellt und die Expression der vier Targets herabgesetzt. Dies resultierte in weniger ausgeprägten Kardiomyozytenhypertrophie sowie in einer signifikanten Verbesserung der Herzfunktion. Aus diesen Daten schließen wir, dass miR-378 einen antihypertrophen Effekt auf Kardiomyozyten hat, der wesentlich durch die Suppression des MAP-Kinase-Signalweges an vier Angriffspunkten vermittelt wird. Die Wiederherstellung des “gesunden” Expressionsniveaus von miR-378 im kranken Herzen durch Kardiomyozyten-spezifische Expression mit AAV-miR-378 könnte eine Therapieoption bei Herzerkrankungen sein. KW - Hypertrophie KW - Herzinsuffizienz KW - miRNS KW - Herzmuskelzelle KW - Cardiomyocytes KW - Gene therapy KW - MicroRNA KW - Cardiac hypertrophy KW - Hypertrophy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100918 ER - TY - THES A1 - Pickel, Simone T1 - Role of the β subunit of L-type calcium channels in cardiac hypertrophy T1 - Die Rolle der β Untereinheit von L-Typ Kalziumkänalen in der kardialen Hypertrophie N2 - L-type calcium channels (LTCCs) control crucial physiological processes in cardiomyocytes such as the duration and amplitude of action potentials, excitation-contraction coupling and gene expression, by regulating the entry of Ca2+ into the cells. Cardiac LTCCs consist of one pore-forming α1 subunit and the accessory subunits Cavβ, Cavα2δ and Cavγ. Of these auxiliary subunits, Cavβ is the most important regulator of the channel activity; however, it can also have LTCC-independent cellular regulatory functions. Therefore, changes in the expression of Cavβ can lead not only to a dysregulation of LTCC activity, but also to changes in other cellular functions. Cardiac hypertrophy is one of the most relevant risk factors for congestive heart failure and depends on the activation of calcium-dependent prohypertrophic signaling pathways. However, the role of LTCCs and especially Cavβ in this pathology is controversial and needs to be further elucidated. Of the four Cavβ isoforms, Cavβ2 is the predominant one in cardiomyocytes. Moreover, there are five different splice variants of Cavβ2 (Cavβ2a-e), differing only in the N-terminal region. We reported that Cavβ2b is the predominant variant expressed in the heart. We also revealed that a pool of Cavβ2 is targeted to the nucleus in cardiomyocytes. The expression of the nuclear Cavβ2 decreases during in vitro and in vivo induction of cardiomyocyte hypertrophy and overexpression of a nucleus-targeted Cavβ2 completely abolishes the in vitro induced hypertrophy. Additionally, we demonstrated by shRNA-mediated protein knockdown that downregulation of Cavβ2 enhances the hypertrophy induced by the α1-adrenergic agonist phenylephrine (PE) without involvement of LTCC activity. These results suggest that Cavβ2 can regulate cardiac hypertrophy through LTCC-independent pathways. To further validate the role of the nuclear Cavβ2, we performed quantitative proteome analyses of Cavβ2-deficient neonatal rat cardiomyocytes (NRCs). The results show that downregulation of Cavβ2 influences the expression of various proteins, including a decrease of calpastatin, an inhibitor of the calcium-dependent cysteine protease calpain. Moreover, downregulation of Cavβ2 during cardiomyocyte hypertrophy drastically increases calpain activity as compared to controls after treatment with PE. Finally, the inhibition of calpain by calpeptin abolishes the increase in PE-induced hypertrophy in Cavβ2-deficient cells. These results suggest that nuclear Cavβ2 has Ca2+- and LTCC-independent functions during the development of hypertrophy. Overall, our results indicate a new role for Cavβ2 in antihypertrophic signaling in cardiac hypertrophy. N2 - Durch die Regulation des Calciumeintritts in die Zellen kontrollieren L-Typ-Calciumkanäle (LTCCs) wichtige physiologische Prozesse wie die Dauer und Amplitude von Aktionspotentialen, die elektromechanische Kopplung und die Genexpression in Kardiomyozyten. Kardiale LTCCs bestehen aus einer porenformenden α1 Untereinheit und Hilfsuntereinheiten wie Cavβ, Cavα2δ und Cavγ. Von diesen Hilfsuntereinheiten ist Cavβ der wichtigste Regulator der Kanalfunktion, wobei Cavβ auch LTCC-unabhängige zelluläre und regulatorische Funktionen haben kann. Veränderungen in der Expression dieses Proteins können daher zu einer Fehlregulation der LTCC-Aktivität führen, jedoch auch zu Veränderungen von anderen zellulären Funktionen. Einer der häufigsten Risikofaktoren für kongestive Herzinsuffizienz ist die kardiale Hypertrophie, welche abhängig ist von der Aktivierung von Calcium-abhängigen prohypertrophen Signalwegen. Die Rolle von LTCCs und insbesondere von Cavβ in dieser Erkrankung ist jedoch kontrovers und muss noch weiter erforscht werden. Von den vier Cavβ Splicevarianten ist Cavβ2 die dominierende Form in Kardiomyozyten. Darüber hinaus existieren fünf verschiedene Splicevarianten von Cavβ2 (Cavβ2a-e), die sich jeweils nur in der N-terminalen Region unterscheiden. Wir konnten demonstrieren, dass von diesen Splicevarianten überwiegend Cavβ2b im Herzen exprimiert wird. Außerdem konnten wir zeigen, dass ein Teil von Cavβ2 im Nukleus von Kardiomyozyten zu finden ist. Die Expression von nuklearem Cavβ2 verringert sich während der in vitro und in vivo induzierten kardialen Hypertrophie und außerdem verhindert die Überexpression von im Kern lokalisiertem Cavβ2 die in vitro induzierte Hypertrophie komplett. Zusätzlich konnten wir demonstrieren, dass die Reduktion von Cavβ2 mittels shRNA zu einer Steigerung der Hypertrophie induziert durch die Stimulation mit dem α1-adrenergen Agonisten Phenylephrin (PE) führt, ohne dass die LTCC-Aktivität beteiligt ist. Diese Ergebnisse legen nahe, dass Cavβ2 die Entstehung von Hypertrophie durch LTCC-unabhängige Signalwege beeinflussen kann. Um die Rolle von nuklearem Cavβ2 zu bekräftigen, haben wir quantitative Proteomanalysen von Cavβ2 defizienten neonatalen Rattenkardiomyozyten (NRCs) durchgeführt. Die Ergebnisse zeigen, dass die Reduktion von Cavβ2 die Expression verschiedener Proteine beeinflusst, zum Beispiel wird Calpastatin, ein Inhibitor der calciumabhängigen Cysteinproteasen Calpain, herunterreguliert. Außerdem wird durch die Cavβ2 Reduktion während der Hypertrophie von Kardiomyozyten die Calpainaktivität verglichen mit den Kontrollen signifikant erhöht. Letztendlich konnten wir zeigen, dass die Inhibierung von Calpain durch Calpeptin die gesteigerte PE-induzierte Hypertrophie in Cavβ2-defizienten Zellen verhindert. Diese Ergebnisse lassen eine Calcium- und LTCC-unabhängige Funktion von nuklearem Cavβ2 während der Entwicklung von Hypertrophie, annehmen. Insgesamt deuten unsere Ergebnisse auf eine neue Rolle von Cavβ2 in den antihypertrophen Signalwegen in der kardialen Hypertrophie hin. KW - Herzhypertrophie KW - Calciumkanal KW - Herzmuskelzelle KW - L-type calcium channels KW - Cavβ subunit KW - Calpain KW - LTCC-independent function of Cavβ Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192829 ER - TY - THES A1 - Cruz Garcia, Yiliam T1 - Interactome of the β2b subunit of L-type voltage-gated calcium channels in cardiomyocytes T1 - Interaktom der β2b-Untereinheit von spannungsgesteuerten L-Typ Kalziumkanälen in Kardiomyozyten N2 - L-type voltage-gated calcium channels (LTCC) are heteromultimeric membrane proteins that allow Ca2+ entry into the cell upon plasma membrane depolarization. The β subunit of voltage-dependent calcium channels (Cavβ) binds to the α-interaction domain in the pore-forming α1 subunit and regulates the trafficking and biophysical properties of these channels. Of the four Cavβ isoforms, Cavβ2 is predominantly expressed in cardiomyocytes. This subunit associates with diverse proteins besides LTCC, but the molecular composition of the Cavβ2 nanoenvironments in cardiomyocytes is yet unresolved. Here, we used a protein-labeling technique in living cells based on an engineered ascorbate peroxidase 2 (APEX2). In this strategy, Cavβ2b was fused to APEX2 and expressed in adult rat cardiomyocytes using an adenovirus system. Nearby proteins covalently labeled with biotin-phenol were purified using streptavidin-coated beads and identified by mass spectrometry (MS). Analysis of the in situ APEX2-based biotin labeling by MS revealed 61 proteins located in the nanoenvironments of Cavβ2b, with a high specificity and consistency in all the replicates. These proteins are involved in diverse cellular functions such as cellular trafficking, sarcomere organization and excitation-contraction coupling. Among these proteins, we demonstrated an interaction between the ryanodine receptor 2 (RyR2) and Cavβ2b, probably coupling LTCC and the RyR2 into a supramolecular complex at the dyads. This interaction is mediated by the Src homology 3 (SH3) domain of Cavβ2b and is necessary for an effective pacing frequency‐dependent increase in Ca2+-induced Ca2+ release in cardiomyocytes. N2 - Die spannungabhängigen L-Typ Kalziumkanäle (LTCC) sind heteromultimere Membranproteine, die den Einstrom von Kalzium (Ca2+) in die Zelle nach Depolarisation der Plasmamembran vermitteln. Die β-Untereinheit von spannungsabhängigen Kalziumkanälen (Cavβ2) bindet an die α-Interaktionsdomäne in der porenformenden α1-Untereinheit und reguliert den Transport und die biophysikalischen Eigenschaften dieser Kanäle. Es gibt vier Isoformen der β-Untereinheiten, die als Cavβ bezeichnet werden, von denen die Cavβ2 Isoform hauptsächlich in Kardiomyozyten exprimiert wird. Diese Untereinheit assoziiert neben dem LTCC mit einer Vielzahl an weiteren Proteinen. Die molekulare Zusammensetzung der Cavβ2 Nanoumgebung, bzw. die Interaktionspartner der Cavβ2 Untereinheit, in Kardiomyozyten ist jedoch immer noch nicht bekannt. In dieser Arbeit verwendeten wir eine Proteinmarkierungstechnik in lebenden Zellen auf Basis einer modifizierten Ascorbatperoxidase 2 (APEX2) um die Cavβ2 Nanoumgebung genauer zu charakterisieren. Dafür wurde Cavβ2b mit APEX2 fusioniert und adenoviral vermittelt in adulten Ratten-Kardiomyozyten exprimiert. APEX2 katalysiert die kovalente Markierung von möglichen Interaktionspartnern in unmittelbarer Nähe der APEX markierten Cavβ2 Untereinheit mit Biotin-Phenol. Markierte Proteine wurden mit Streptavidin beschichteten Beads isoliert und mittels Massenspektrometrie (MS) identifiziert. Die Analyse der MS ergab 61 Proteine in der Nanoumgebung von Cavβ2b. Die Analyse zeichnete sich durch eine hohe Spezifität und Beständigkeit in allen Replikaten aus. Diese identifizierten Proteine haben diverse Funktionen wie zelluläre Transportsteuerung, den Aufbau von Sarkomeren und elektromechanischen Kopplung. Eines dieser Proteinen war der Ryanodinrezeptor 2 (RyR2) und damit konnten wir eine Interaktion von RyR2 und Cavβ2b nachweisen, welche wahrscheinlich die LTCCs und RyR2 zu einem supramolekularen Komplex in den Dyaden verbindet. Diese Interaktion wird durch die Src homology 3 (SH3) Domäne von Cavβ2b vermittelt und ist für einen effektive Stimulationsfrequenz-abhängigen Anstieg der Calcium-induzierten Calciumfreisetzung in Kardiomyozyten notwendig. KW - Calciumkanal KW - Herzmuskelzelle Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-208579 ER - TY - THES A1 - Mekala, SubbaRao T1 - Generation of cardiomyocytes from vessel wall-resident stem cells T1 - Erzeugung von Kardiomyozyten aus Gefäßwand-residenten Stammzellen N2 - Myocardial infarction (MI) is a major cause of health problems and is among the leading deadly ending diseases. Accordingly, regenerating functional myocardial tissue and/or cardiac repair by stem cells is one of the most desired aims worldwide. Indeed, the human heart serves as an ideal target for regenerative intervention, because the capacity of the adult myocardium to restore itself after injury or infarct is limited. Thus, identifying new sources of tissue resident adult stem or progenitor cells with cardiovascular potential would help to establish more sophisticated therapies in order to either prevent cardiac failure or to achieve a functional repair. Ongoing research worldwide in this field is focusing on a) induced pluripotent stem (iPS) cells, b) embryonic stem (ES) cells and c) adult stem cells (e. g. mesenchymal stem cells) as well as cardiac fibroblasts or myofibroblasts. However, thus far, these efforts did not result in therapeutic strategies that were transferable into the clinical management of MI and heart failure. Hence, identifying endogenous and more cardiac-related sources of stem cells capable of differentiating into mature cardiomyocytes would open promising new therapeutic opportunities. The working hypothesis of this thesis is that the vascular wall serves as a niche for cardiogenic stem cells. In recent years, various groups have identified different types of progenitors or mesenchymal stem cell-like cells in the adventitia and sub-endothelial zone of the adult vessel wall, the so called vessel wall-resident stem cells (VW-SCs). Considering the fact that heart muscle tissue contains blood vessels in very high density, the physiological relevance of VW-SCs for the myocardium can as yet only be assumed. The aim of the present work is to study whether a subset of VW-SCs might have the capacity to differentiate into cardiomyocyte-like cells. This assumption was challenged using adult mouse aorta-derived cells cultivated in different media and treated with selected factors. The presented results reveal the generation of spontaneously beating cardiomyocyte-like cells using specific media conditions without any genetic manipulation. The cells reproducibly started beating at culture days 8-10. Further analyses revealed that in contrast to several publications reporting the Sca-1+ cells as cardiac progenitors the Sca-1- fraction of aortic wall-derived VW-SCs reproducibly delivered beating cells in culture. Similar to mature cardiomyocytes the beating cells developed sarcomeric structures indicated by the typical cross striated staining pattern upon immunofluorescence analysis detecting α-sarcomeric actinin (α-SRA) and electron microscopic analysis. These analyses also showed the formation of sarcoplasmic reticulum which serves as calcium store. Correspondingly, the aortic wall-derived beating cardiomyocyte-like cells (Ao-bCMs) exhibited calcium oscillations. This differentiation seems to be dependent on an inflammatory microenvironment since depletion of VW-SC-derived macrophages by treatment with clodronate liposomes in vitro stopped the generation of Ao bCMs. These locally generated F4/80+ macrophages exhibit high levels of VEGF (vascular endothelial growth factor). To a great majority, VW-SCs were found to be positive for VEGFR-2 and blocking this receptor also stopped the generation VW-SC-derived beating cells in vitro. Furthermore, the treatment of aortic wall-derived cells with the ß-receptor agonist isoproterenol or the antagonist propranolol resulted in a significant increase or decrease of beating frequency. Finally, fluorescently labeled aortic wall-derived cells were implanted into the developing chick embryo heart field where they became positive for α-SRA two days after implantation. The current data strongly suggest that VW-SCs resident in the vascular adventitia deliver both progenitors for an inflammatory microenvironment and beating cells. The present study identifies that the Sca-1- rather than Sca-1+ fraction of mouse aortic wall-derived cells harbors VW-SCs differentiating into cardiomyocyte-like cells and reveals an essential role of VW-SCs-derived inflammatory macrophages and VEGF-signaling in this process. Furthermore, this study demonstrates the cardiogenic capacity of aortic VW-SCs in vivo using a chimeric chick embryonic model. N2 - Der Myokardinfarkt (MI) ist einer der Hauptgründe für gesundheitliche Probleme und zählt zu einer der am häufigsten tödlich verlaufenden Krankheiten weltweit. Daher ist es nicht verwunderlich, dass die Regeneration von funktionellem Myokardgewebe und/oder die kardiale Reparatur durch Stammzellen eines der weltweit am meisten angestrebten Ziele darstellt. Das adulte menschliche Herz stellt aufgrund seiner äußerst eingeschränkten endogenen Regenerationskapazität, die bei weitem nicht ausreicht, das geschädigte Gewebe zu erneuern, ein ideales Zielorgan für regenerative Therapieverfahren dar. Folglich könnte die Identifizierung neuer Quellen adulter Stamm- oder Vorläuferzellen mit kardiovaskulärem Differenzierungspotential dabei helfen, verfeinerte Therapien zu entwickeln, um entweder kardiale Fehlfunktionen zu verhindern oder eine deutlich verbesserte myokardiale Reparatur zu erreichen. Die aktuelle weltweite Forschung auf diesem Gebiet fokussiert sich auf: a) induzierte pluripotente Stammzellen (iPS), b) embryonale Stammzellen (ES) und c) adulte Stammzellen, wie z. B. mesenchymale Stammzellen, kardiale Fibroblasten und Mesangioblasten sowie Myofibroblasten. Bisher haben jedoch alle Bemühungen noch zu keinem Durchbruch geführt, so dass die teilweise vielversprechenden experimentellen Ergebnisse nicht in die klinische Therapie des MI und der kardialen Defekte mittels Stammzellen transferiert werden können. Abgesehen davon, ob und wie stark so ein endogenes herzeigenes Potential wäre, würde die Identifizierung neuer endogener Stammzellen mit kardiogenem Potential, die genaue Charakterisierung ihrer Nischen und der Mechanismen ihrer Differenzierung einen Meilenstein in der kardioregenerativen Stammzelltherapie darstellen. Die Arbeitshypothese der hier vorgelegten Dissertation besagt, dass die Gefäßwand als Nische solcher Zellen dienen könnte. Innerhalb der letzten Jahre konnte die Adventitia und die subendotheliale Zone der adulten Gefäßwand als Nische für unterschiedliche Typen von Vorläuferzellen und multipotenten Stammzellen, die sogenannten Gefäßwand-residenten Stammzellen (VW-SCs) identifiziert werden. In Anbetracht der Tatsache, dass die Blutgefäße aufgrund ihrer hohen Dichte im Herzen eine essentielle stromale Komponente des Herzgewebes darstellen, kann die mögliche klinische Relevanz von VW-SCs für das Myokardium im Moment nur erahnt werden. Ausgehend von der Annahme, dass eine Subpopulation dieser VW-SCs die Fähigkeit besitzt, sich in Kardiomyozyten-ähnliche Zellen zu differenzieren, sollte im Rahmen dieser Dissertationsarbeit das myokardiale Potential der Gefäßwand-residenten Stammzellen aus der Aorta adulter Mäuse studiert werden, indem die Zellen unter unterschiedlichen definierten Bedingungen kultiviert und dann sowohl morphologisch als auch funktionell charakterisiert werden. Erstaunlicherweise zeigten die ersten Ergebnisse die Generierung spontan schlagender Kardiomyozyten-ähnlicher Zellen, nur durch Verwendung eines speziellen Nährmediums und ohne jegliche genetische Manipulation. Die im Rahmen dieser Arbeit durchgeführten Analysen belegen zudem, dass die Kardiomyozyten-ähnlichen Zellen reproduzierbar nach ca. 9-11 Tagen in der Kultur anfangen, spontan zu schlagen. In immunzytochemischen Analysen zeigten die schlagenden Zellen ein quergestreiftes Färbemuster für α sarkomeres Actinin. Passend dazu wiesen diese spontan schlagenden Zellen, wie reife Kardiomyozyten, Sarkomerstrukturen mit Komponenten des sarkoplasmatischen Retikulums in elektronenmikroskopischen Analysen auf. Sie zeigten dementsprechend eine mit dem spontanen Schlag assoziierte Kalzium-Oszillation. Erstaunlicherweise zeigten die hier vorgelegten Befunde erstmalig, dass es nicht die Sca-1+ (stem cell antigen-1) Zellen waren, denen seit Jahren eine kardiomyozytäre Kapazität zugeschrieben wird, sondern es waren die Sca-1- Zellen der Mausaorta, die sich zu den spontan schlagenden Zellen differenzierten. Des Weiteren scheint diese Differenzierung von einer endogen generierten inflammatorischen Mikroumgebung abhängig zu sein. Die hier vorgelegten Ergebnisse legen daher den Schluss nahe, dass die VW-SCs in der vaskulären Adventitia sowohl die inflammatorische Mikroumgebung als auch die spontan schlagenden Kardiomyozyten-ähnlichen Zellen bereitstellten. So entstanden in der Kultur aortaler Zellen unter anderem auch Makrophagen, die hohe Mengen des Gefäßwachstumsfaktors VEGF (Vascular Endothelial Growth Factor) aufweisen. Wurden die Makrophagen in der Zellkultur durch Zugabe von Clodtronat-Liposomen depletiert, so wurde damit auch die Generierung spontan schlagender Zellen aus den aortalen VW-SCs unterbunden. Um zu testen, ob und inwieweit dieser Einfluss der Makrophagen auf die Entstehung spontan schlagender Zellen aus den VW-SCs auf den VEGF zurückzuführen ist, wurden kultivierte Zellen der Mausaorta mit dem VEGF-Rezeptor-2-Blocker (E7080) behandelt. Auch diese Behandlung resultierte wie bei der Depletion von Makrophagen darin, dass keine spontan schlagenden Zellen entstanden. Um die von VW-SCs generierten spontan schlagenden Zellen funktionell zu charakterisieren, wurden die kultivierten Zellen der Mausaorta mit Isoproterenol (ß-Sympathomimetikum) und Propranolol (ß-Blocker) behandelt. Eine signifikante Steigerung der Schlagfrequenz unter Isoproterenol und eine Reduzierung bei Zugabe von Propranolol unterstreichen ebenfalls die Kardiomyozyten-ähnliche Eigenschaft der spontan schlagenden Zellen. Schließlich wurden die aus der Mausaorta isolierten Zellen Fluoreszenz-markiert und dann in das kardiale Feld des sich entwickelnden Hühnerembryos (am fünften Tag der Entwicklung) implantiert. Zwei Tage später wurden die Herzen entnommen. Immunfärbungen zeigten, dass ein Teil der implantierten Zellen auch unter diesen in vivo-Bedingungen für α-sarkomeres Actinin positiv wurde und somit einen kardiomyozytären Phänotyp aufwies. KW - vessel wall resident stem cells KW - cardiomyocytes KW - Herzmuskelzelle KW - Stammzelle Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-146046 N1 - My PhD research work has been published in Circ Res. 2018 Aug 31;123(6):686-699. ER -