TY - THES A1 - Roth, Heide Marie T1 - Nucleotide Excision Repair: From Recognition to Incision of damaged DNA T1 - Nukleotid-Exzisions-Reparatur: Vom Erkennen zum Schneiden der geschädigten DNA N2 - The Nucleotide Excision Repair (NER) pathway is able to remove a vast diversity of structurally unrelated DNA lesions and is the only repair mechanism in humans responsible for the excision of UV induced DNA damages. The NER mechanism raises two fundamental questions: 1) How is DNA damage recognition achieved discriminating damaged from non damaged DNA? 2) How is DNA incision regulated preventing endonucleases to cleave DNA non specifically but induce and ensure dual incision of damaged DNA? Thus, the aim of this work was to investigate the mechanisms leading from recognition to incision of damaged DNA. To decipher the underlying process of damage recognition in a prokaryotic model system, the intention of the first part of this work was to co crystallize the helicase UvrB form Bacillus caldotenax together with a DNA substrate comprising a fluorescein adducted thymine as an NER substrate. Incision assays were performed to address the question whether UvrB in complex with the endonuclease UvrC is able to specifically incise damaged DNA employing DNA substrates with unpaired regions at different positions with respect to the DNA lesion. The results presented here indicate that the formation of a specific pre incision complex is independent of the damage sensor UvrA. The preference for 5’ bubble substrate suggests that UvrB is able to slide along the DNA favorably in a 5’ → 3’ direction until it directly encounters a DNA damage on the translocating strand to then recruit the endonuclease UvrC. In the second part of this work, the novel endonuclease Bax1 from Thermoplasma acidophilum was characterized. Due to its close association to archaeal XPB, a potential involvement of Bax1 in archaeal NER has been postulated. Bax1 was shown to be a Mg2+ dependent, structure specific endonuclease incising 3’ overhang substrates in the single stranded region close to the ssDNA/dsDNA junction. Site directed mutagenesis of conserved amino acids was employed to identify putative active site residues of Bax1. In complex with the helicase XPB, however, incision activity of Bax1 is altered regarding substrate specificity. The presence of two distinct XPB/Bax1 complexes with different endonuclease activities indicates that XPB regulates Bax1 incision activity providing insights into the physical and functional interactions of XPB and Bax1. N2 - Die Nukleotid-Exzisions-Reparatur (NER) ist in der Lage, eine Vielfalt an strukturell unterschiedlichen DNA Schädigungen zu entfernen, und ist überdies der einzige DNA-Reparaturmechanismus im Menschen, der UV induzierte DNA-Schädigungen entfernen kann. Der NER Mechanismus impliziert zwei grundlegende Fragen: 1) Wie wird geschädigte DNA erkannt und worauf gründet sich die Unterscheidung zwischen geschädigter und nicht geschädigter DNA? 2) Wie wird das Schneiden der DNA reguliert? Wie wird unspezifisches Schneiden verhindert und sichergestellt, dass die geschädigte DNA auf beiden Seiten der Schädigung herausgeschnitten wird? Das Ziel dieser Arbeit war es daher, die Mechanismen zu untersuchen, die vom Erkennen zum Herausschneiden geschädigter DNA führen. Um im bakteriellen Modelsystem den zugrundeliegenden Prozess der Schadenserkennung zu entschlüsseln, sollte im ersten Teil dieser Arbeit die Helikase UvrB aus Bacillus caldotenax zusammen mit einem geschädigten DNA Substrat kristallisiert werden. Als Schädigung wurde ein Fluorescein-Molekül genutzt, das an eine Thymin-Base gekoppelt wurde. Biochemische Experimente wurden durchgeführt um herauszufinden, ob UvrB im Komplex mit der Endonuklease UvrC spezifisch geschädigte DNA schneiden kann. Dafür wurden DNA-Substrate eingesetzt, die ungepaarte Basen an verschiedenen Stellen bezüglich der DNA-Schädigung enthielten. Die hier gezeigten Ergebnisse deuten darauf hin, dass ein spezifischer Komplex gebildet werden kann, der auch unabhängig von dem Schadenssensor UvrA zum Schneiden der DNA befähigt ist. Die Schnitt-Präferenz für die 5‘ ungepaarte Region lässt vermuten, dass UvrB bevorzugt in 5‘→3‘ Richtung an der DNA entlanggleiten kann. Sobald UvrB auf eine Schädigung auf diesem DNA Strang trifft, wird die Endonuklease UvrC rekrutiert. Im zweiten Teil dieser Arbeit wurde die neuartige Endonuklease Bax1 aus Thermoplasma acidophilum charakterisiert. Aufgrund der engen Assoziation zu archaischem XPB wurde eine Beteiligung an der archaischen NER postuliert. Es konnte gezeigt werden, dass Bax1 eine Mg2+ abhängige, strukturspezifische Endonuklease ist, die 3‘-Überhang Substrate im Einzelstrangbereich nahe des Einzelstrang/Doppelstrang Überganges schneidet. Konservierte Aminosäuren wurden gezielt verändert, um diejenigen Reste zu identifizieren, die möglicherweise das aktive Zentrum bilden. Im Komplex mit der Helikase XPB veränderte sich jedoch das Schneideverhalten im Hinblick auf die Substratspezifizität. Die Existenz von zwei verschiedenen XPB/Bax1 Komplexen mit unterschiedlicher Aktivität bezüglich des Schnittverhaltens könnte darauf hinweisen, dass XPB Bax1 reguliert. Diese Beobachtung erlaubt zugleich Einblicke in die Interaktion von XPB und Bax1 auf physikalischer und funktioneller Ebene. KW - DNS-Reparatur KW - Nucleasen KW - Helicasen KW - Archaebakterien KW - DNA Repair KW - Nuclease KW - Helicase KW - Archaea Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-57098 ER - TY - THES A1 - Wolski, Stefanie Carola T1 - Structural and functional characterization of nucleotide excision repair proteins T1 - Strukturelle und funktionelle Charakterisierung von Nucleotid-Exzisions-Reparatur Proteinen N2 - XPD is a 5‘-3‘ helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade. N2 - XPD ist eine 5‘-3‘ Helicase der Superfamilie 2. Als Untereinheit des Transkriptionsfaktors IIH ist XPD in Transkriptionsinitiation und Nucleotid-Exzisions-Reparatur involviert. Diese Arbeit fokusiert auf die Rolle von XPD in der NER. NER ist ein DNA Reparatur Weg der bekannt ist für seine breite Substratspezifität. In Säugetieren ist NER der einzige Reparaturmechanismus, der fähig ist Läsionen zu reparieren, die durch UV Strahlung induziert werden. NER kann man in vier unterschiedliche Schritte aufteilen die zwischen Pro- und Eukaryoten konserviert sind. Schritt 1 besteht aus der initialen Schadenserkennung, während des zweiten Schrittes wird der mögliche Schaden verifiziert, im dritten Schritt wird der verifizierte Schaden ausgeschnitten und im vierten und letzten Schritt wird die resultierende Lücke in der DNA geschlossen. Es wurde gezeigt, dass XPD in die Schadensverifizierung involviert ist. Ein MAD Versuch, bei dem nur das endogene Eisen des Eisen-Schwefel-Clusters verwendet wurde ermöglichte die Strukturlösung der ersten apo XPD Struktur. Basierend auf der Struktur ergeben sich verschiedene Fragen: wo wird DNA gebunden? Wo wird DNA aufgetrennt? Wie wird Schadenserkennung ermöglicht? Was ist die Rolle des Eisen-Schwefel-Clusters? Diese Fragen werden in dieser Arbeit angesprochen. Strukturbasierte funktionelle Mutagenesestudien, die auf Hypothesen basiert sind, wurden angewendet und mit einer detailierten biochemischen Charakterizierung der Varianten kombiniert. Die Varianten wurden mittels thermischen Entfaltungsstudien analysiert, um die Möglichkeit auszuschliessen, dass die Stabilität durch die Punktmutation betroffen ist. DNA-Bindungs- Assays, ATPase Assays und Helikase Assays wurden durchgeführt um Aminosäurereste zu identifizieren, die für DNA Bindung, Helikase Aktivität und Schadenserkennung wichtig sind. Eine Struktur von XPD, die ein DNA Fragment mit vier Basen enthält, wurde mittels Molekularem Ersatz gelöst. Diese Struktur zeigt die Polarität des translozierenden DNA- Stranges im Verhältnis zu der Helikasestruktur auf. Desweiteren wurden die Eigenschaften des FeS Clusters mittels paramagnetischen Elektronenresonanz Studien untersucht, um Einblicke in die Rolle des FeS Clusters zu bekommen. Ausserdem wurde XPD aus Ferroplasma acidarmanus erforscht, da gezeigt wurde, dass es an CPD enthaltenden Läsionen hängen bleibt. Diese Daten stellen die ersten detailierten Einblicke in den Translokationsmechanismus einer SF2B Helikase dar und zeigen wie Polarität erzielt wird. Das ist eine Basis für weitere Analysen, um die kombinierte Aktion von Helikase und dem 4Fe4S Cluster zu verstehen, die zur Schadenserkennung in der NER Kaskade führt. KW - DNS-Reparatur KW - Helicasen KW - Kristallographie KW - XPD KW - Xeroderma pigmentosum KW - TFIIH KW - Nukleotid-Exzisions-Reparatur KW - X-ray Crystallography KW - XPD KW - TFIIH KW - Nucleotide-Excision-Repair KW - FeS cluster Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67183 ER - TY - THES A1 - Rohleder, Florian T1 - The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair T1 - Das komplexe Netzwerk der replikationsabhängigen Reparatur von DNA-Quervernetzungen N2 - The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D’Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 Å. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, Würzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing. N2 - Der Fanconi Anämie (FA) Signalweg ist ein replikationsabhängiger DNA-Reparaturmechanismus, der grundlegend zur Beseitigung von DNA-Schäden in Form von intermolekularen Quervernetzungen (ICL) beiträgt (Moldovan and D’Andrea, 2009). Fehlfunktionen in diesem stringent regulierten Reparaturnetzwerk führen somit zu Genominstabilität (Deans and West, 2011). Der pathologische Phänotyp der Krankheit FA, die durch Mutationen in dem gleichnamigen DNA-Reparatur Signalweg verursacht wird, ist sehr heterogen und umfasst angeborene Deformationen, Knochenmarksversagen, eine erhöhte Tumor Disposition sowie Infertilität (Auerbach, 2009). Der FA Mechanismus ist ein komplexes Netzwerk und bisher wurden 16 FA Komplementationsgruppen sowie weitere beteiligte Faktoren identifiziert (Kottemann and Smogorzewska, 2013). Zusätzlich sind Komponenten der Nukleotid-Exzisionsreparatur (NER), der homologen Rekombinationsreparatur (HRR) und Transläsionssynthese (TLS) involviert, die durch FA Proteine koordiniert werden (Niedzwiedz et al., 2004; Knipscheer et al., 2009). Eines der FA Proteine ist die DEAH Helikase FANCM. Im Komplex mit seinen Interaktionspartnern FAAP24 und MHF1/2 bindet FANCM an die durch den ICL Schaden zum Stillstand gekommene Replikationsgabel und aktiviert die FA Schadensantwort (Wang et al., 2013). Die weiteren Schritte, die zur Entfernung des ICL Schadens führen, sind jedoch weitestgehend ungeklärt. Zur Aufklärung der Initiation des FA Mechanismus und der Rolle, die das FANCM dabei spielt, wurde in dieser Arbeit hauptsächlich das archaische FANCM Homolog Helicase-associated Endonuclease for Fork-structured DNA (Hef) analysiert. Hef aus dem archaischen Organismus Thermoplasma acidophilum (taHef) unterscheidet sich von anderen archaischen Hef Proteinen und besteht ausschließlich aus einem N-terminalen Helikase-Abschnitt mit zwei RecA und einer thumb-like Domäne, während andere Hef Proteine am C-Terminus zusätzlich eine Nuklease-Domäne besitzen. Ich habe die Kristallstruktur des taHef Proteins bei einer Auflösung von 2,43 Å gelöst. Im Gegensatz zur Kristallstruktur eines vergleichbaren Hef-Konstruktes aus Pyrococcus furiosus (pfHef) (Nishino et al., 2005b) liegt in taHef eine extrem offene Konformation der beiden RecA-Domänen vor, was impliziert, dass eine Bewegung der RecA-ähnlichen Helikase Motordomänen um 61° möglich ist und zudem die zur Translokation entlang der DNA notwendige Flexibilität von Helikasen verdeutlicht. Messungen mittels Kleinwinkelröntgenstreuung (SAXS) deuten hingegen auf eine intermediäre Konformation des taHef Proteins in Lösung hin, wodurch beide Kristallstrukturen als eher Randzustände angesehen werden können. Besonders hervorzuheben ist, dass das Protein Proliferating Cell Nuclear Antigen (PCNA) als Hef Interaktionspartner identifiziert wurde. Diese Interaktion wird durch ein hoch-konserviertes kanonisches PCNA Interaktionspeptid-Motiv vermittelt. Interessanterweise beeinflusst PCNA aber weder die ATPase noch die Helikase Aktivität von taHef, was darauf hindeutet, dass diese Interaktion nur zur Rekrutierung des Hef Proteins zur Replikationsgabel dient. Wegen des hohen Maßes an Flexibilität konnte der taHef-taPCNA Komplex nicht kristallisiert werden, wohingegen SAXS Messungen erfolgreich waren und ein Model bei niedriger Auflösung konnte erhalten werden. Diese nachgewiesene Interaktion zwischen Hef und PCNA konnte auch für das eukaryotische FANCM Homolog Mph1 aus dem thermophilen Pilz Chaetomium thermophilum (ctMph1) bestätigt werden. Als ersten Schritt zur Charakterisierung dieser Interaktion habe ich die Kristallstruktur von PCNA aus Chaetomium thermophilum (ctPCNA) gelöst. Weiterhin war es möglich, vorläufige Resultate bezüglich der mutmaßlichen Interaktion zwischen den humanen Proteinen FANCM und PCNA (hsFANCM, hsPCNA) zu erhalten. In Kooperation mit Detlev Schindler (Humangenetik, Würzburg) und Weidong Wang (National Institute on Aging, Baltimore, USA) wurden Co-Immunopräzipitations-Experimente (CoIP) mit humanem FANCM und humanem PCNA aus HEK293-Zellen durchgeführt. Obwohl eine Interaktion in Hydroxyurea-stimulierten Zellen reproduzierbar nachgewiesen werden konnte, sind weitere Experimente notwendig, um diese Interaktion zu charakterisieren. KW - DNS-Reparatur KW - DNA Repair KW - Fanconi Anemia KW - Structural Biology KW - Fanconi-Anämie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113121 ER - TY - THES A1 - Wanzek, Katharina T1 - The investigation of the function of repair proteins at G-quadruplex structures in \(Saccharomyces\) \(cerevisiae\) revealed that Mms1 promotes genome stability T1 - Die Untersuchung der Funktion von Reparaturproteinen an G-Quadruplex Strukturen in \(Saccharomyces\) \(cerevisiae\) zeigte, dass Mms1 Genomstabilität fördert N2 - G-quadruplex structures are highly stable alternative DNA structures that can, when not properly regulated, impede replication fork progression and cause genome instability (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu & Spies, 2016; Zimmer et al, 2016). The aim of this thesis was to identify novel G-quadruplex interacting proteins in Saccharomyces cerevisiae and to unravel their regulatory function at these structures to maintain genome integrity. Mms1 and Rtt101 were identified as G-quadruplex binding proteins in vitro via a pull-down experiment with subsequent mass spectrometry analysis. Rtt101, Mms1 and Mms22, which are all components of an ubiquitin ligase (Rtt101Mms1/Mms22), are important for the progression of the replication fork following fork stalling (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). The in vivo binding of endogenously tagged Mms1 to its target regions was analyzed genome-wide using chromatin-immunoprecipitation followed by deep-sequencing. Interestingly, Mms1 bound independently of Mms22 and Rtt101 to G-rich regions that have the potential to form G-quadruplex structures. In vitro, formation of G-quadruplex structures could be shown for the G-rich regions Mms1 bound to. This binding was observed throughout the cell cycle. Furthermore, the deletion of MMS1 caused replication fork stalling as evidenced by increased association of DNA Polymerase 2 at Mms1 dependent sites. A gross chromosomal rearrangement assay revealed that deletion of MMS1 results in a significantly increased genome instability at G-quadruplex motifs compared to G-rich or non-G-rich regions. Additionally, binding of the helicase Pif1, which unwinds G4 structures in vitro (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), to Mms1 binding sites was reduced in mms1 cells. The data presented in this thesis, together with published data, suggests a novel mechanistic model in which Mms1 binds to G-quadruplex structures and enables Pif1 association. This allows for replication fork progression and genome integrity. N2 - Bei G-quadruplex Strukturen handelt es sich um stabile Sekundärstrukturen der DNA, welche das Fortschreiten der Replikationsgabel behindern und Genominstabilität verursachen können, falls sie nicht konsequent reguliert werden (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu & Spies, 2016; Zimmer et al, 2016). Ziel dieser Doktorarbeit war es, neue Proteininteraktionspartner dieser Strukturen in Saccharomyces cerevisiae zu identifizieren und zu untersuchen, wie diese Proteine die Strukturen regulieren um Genomstabilität zu gewährleisten. Mit Hilfe eines Pulldown Assays und anschließender massenspektrometrischer Analyse wurden Mms1 und Rtt101 in vitro als Interaktionspartner von G-quadruplex Strukturen identifiziert. Rtt101, Mms1 und Mms22, Komponenten der Ubiquitinligase Rtt101Mms1/Mms22, spielen eine wichtige Rolle beim Fortschreiten der Replikationsgabel, falls dieses durch Agenzien gehemmt wurde (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). Durch Chromatin-Immunpräzipitation mit anschließender Hochdurchsatzsequenzierung wurden die Bindestellen von Mms1 identifiziert. Interessanterweise hat Mms1 genomweit an G-reiche Sequenzen gebunden. Diese G-reichen Sequenzen bildeten G-quadruplex Strukturen in vitro aus. Die Bindung von Mms1 erfolgte unabhängig von Rtt101 und Mms22 sowie während des gesamten Zellzyklus. Außerdem kam es zu einer Verlangsamung der Replikationsgabel in mms1 Zellen, was durch eine verstärkte Bindung der DNA Polymerase 2 nachgewiesen wurde. Ein gross chromsomal rearrangement assay zeigte, dass die Genominstabilität in mms1 Zellen signifikant erhöht ist, wenn G-quadruplex Motive, im Vergleich zu nicht-G-reichen oder G-reichen Kontrollregionen, vorhanden sind. Zudem war die Bindung der Helikase Pif1, welche G-quadruplex Strukturen in vitro entwindet (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), stark reduziert, wenn Mms1 fehlte. Mit Hilfe der in dieser Doktorarbeit gewonnenen Ergebnisse, sowie mit Hilfe publizierter Daten, lässt sich ein Model postulieren, in welchem Mms1 an G-quadruplexe bindet und somit die Bindung von Pif1 ermöglicht. Dadurch werden das Fortschreiten der Replikationsgabel und die Genomstabilität gewährleistet. KW - Quadruplex-DNS KW - DNS-Reparatur KW - genome stability KW - Bierhefe Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-142547 ER - TY - THES A1 - Kölmel, Wolfgang T1 - Structural and functional characterization of TFIIH from \(Chaetomium\) \(thermophilum\) T1 - Strukturelle und funktionale Charakterisierung von TFIIH aus \(Chaetomium\) \(thermophilum\) N2 - Gene expression and transfer of the genetic information to the next generation forms the basis of cellular life. These processes crucially rely on DNA, thus the preservation, transcription and translation of DNA is of fundamental importance for any living being. The general transcription factor TFIIH is a ten subunit protein complex, which consists of two subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and functional data of TFIIH are available so far. Here, the model organism Chaetomium thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By combining the expression and purification of single TFIIH subunits with the co-expression and co-purification of dual complexes, a unique and powerful modular system of the TFIIH core subunits could be established, encompassing all proteins in high quality and fully functional. This system permits the step-wise assembly of TFIIH core, thereby making it possible to assess the influence of the intricate interaction network within TFIIH core on the overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single subunits and dual complexes, a detailed interaction network of TFIIH core was established, revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH adopts different conformational states, which are important to fulfill its functions in transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium derivatization. N2 - Die Expression von Genen und die Weitergabe des Erbguts an die nächste Generation bilden die Grundlage jeden Lebens. Bei diesen Vorgängen spielt die DNA eine entscheidende Rolle. Deshalb sind der Erhalt, die Transkription und die Translation der DNA von fundamentaler Bedeutung für alle Lebewesen. Der generelle Transkriptionsfaktor TFIIH ist ein Multi-Proteinkomplex und umfasst insgesamt zehn Untereinheiten. TFIIH kann in zwei Teilkomplexe unterteilt werden: XPB, p62, p52, p44, p34 und p8 bilden den TFIIH Core Komplex, CDK7, CyclinH und MAT1 bilden den CAK Komplex. Diese beiden Teilkomplexe werden durch XPD verbunden. TFIIH spielt eine entscheidende Rolle sowohl in der DNA Reparatur, als auch in der Transkription. Diese zentrale Rolle wird durch das Auftreten dreier schwerer Krankheiten deutlich, die mit dem Ausfall von TFIIH bei diesen Aufgaben in Verbindung stehen: Xeroderma pigmentosum, Cockayne-Syndrom und Trichothiodystrophie. Daten bezüglich der Struktur und Funktion von TFIIH stehen bisher nur in begrenztem Umfang zur Verfügung. In dieser Arbeit kam der Modellorganismus Chaetomium thermophilum zum Einsatz, mit dem Ziel die Struktur und Funktion von TFIIH näher zu beleuchten. Durch die Kombination der Expression und Aufreinigung einzelner TFIIH Untereinheiten mit der Koexpression und Koaufreinigung von dualen Komplexen konnte ein einmaliges und leistungsfähiges modulares System entwickelt werden, das die Darstellung aller Untereinheiten in hoher Qualität und voller Funktionalität erlaubt. Basierend auf diesen Ergebnissen wurde die schrittweise modulare Zusammensetzung von TFIIH Core ermöglicht, was es nun erlaubt den Einfluss der komplexen Wechselwirkungen innerhalb von TFIIH Core auf die enzymatischen Aktivitäten im Ganzen zu untersuchen, was bisher nicht möglich war. Mit Hilfe der Einzelproteine und dualen Komplexe wurde ein detailliertes Netzwerk aus Wechselwirkungen innerhalb TFIIH Core etabliert, welches die entscheidende Rolle der p34 Untereinheit als zentrales Gerüst für TFIIH offenbarte, da sie die Verbindung zwischen p44 und p52 herstellt. Unsere Untersuchungen deuten zudem darauf hin, dass p62 die zentrale Schnittstelle zur Umgebung von TFIIH darstellt, anstatt als Gerüst zu fungieren. Des Weiteren gelang die Assemblierung von TFIIH Core Komplexen, die mittels Elektronenmikroskopie untersucht wurden. Die Strukturen, die daraus hervorgingen, legen das Vorhandensein verschiedener TFIIH Konformationen nahe, welche vermutlich bei den verschiedenen Aufgaben von TFIIH in der Transkription und DNA Reparatur zum Tragen kommen. Außerdem wurde mit Hilfe eines gekürzten p62 Konstrukts eine einfach zu handhabende, kostengünstige Strategie zur Lösung des kristallografischen Phasenproblems mittels Cäsiumderivatisierung entwickelt. KW - Transkriptionsfaktor KW - DNS-Reparatur KW - TFIIH Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-161769 ER - TY - THES A1 - Schönwetter, Elisabeth Sofie T1 - Towards an understanding of the intricate interaction network of TFIIH T1 - Auf dem Weg zum Verständnis des komplexen TFIIH Interaktionsnetzwerkes N2 - The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor. N2 - Die Unversehrtheit ihrer DNA ist für jede lebende Zelle elementar. Die DNA ist jedoch fortwährend exogenen und endogenen Toxinen ausgeliefert, die eine Vielfalt unterschiedlicher DNA-Schäden verursachen. Die sehr ernsthaften Konsequenzen einer Anhäufung von DNA-Schäden spiegeln sich in der Entstehung von Tumorerkrankungen und Alterung wider. Verschiedene DNA-Reparaturmechanismen sorgen für die Reparatur von DNA-Schäden und erhalten so die Unversehrtheit der DNA. Einer dieser DNA-Reparaturmechanismen ist die Nukleotid-Exzisions-Reparatur (NER), die bekannt dafür ist, eine Vielfalt an strukturell unterschiedlichen DNA-Schäden zu adressieren. Eine Schlüsselkomponente der eukaryotischen NER ist der Transkriptionsfaktor II H (TFIIH), welcher nicht nur für die DNA-Reparatur, sondern auch für die Transkription essentiell ist. Der TFIIH Komplex besteht aus zehn Untereinheiten. Wie diese Untereinheiten zusammenarbeiten, um die DNA um den Schaden herum zu entwinden, ist jedoch noch nicht hinreichend bekannt. Hochaufgelöste Strukturdaten und biochemische Einblicke in die Funktion jeder Untereinheit sind daher unabkömmlich, um das funktionelle Netzwerk innerhalb dieses Transkriptionsfaktors zu verstehen. Die Bedeutung eines intakten TFIIH Komplexes spiegelt sich in den verheerenden Folgen von Patientenmutationen in den TFIIH Untereinheiten XPB, XPD oder p8 wider, die zu den kennzeichnenden Krankheitsbildern von Xeroderma Pigmentosum, Cockayne Syndrom und Trichothiodystrophie führen. Ein fehlerhafter NER Reparaturweg ist ferner mit einigen Krebsarten wie Hautkrebs assoziiert. Die hier beschriebene Arbeit hat sich auf fünf TFIIH Untereinheiten konzentriert, die aus dem thermophilen Pilz Chaetomium thermophilum stammen, das p34/p44 Heterodimer und der ternäre XPB/p52/p8 Komplex. Die Interaktion zwischen p34 und p44 wurde basierend auf einer hochaufgelösten Kristallstruktur des p34_vWA/p44_RING Minimalkomplexes charakterisiert. Biochemische Studien der p34/p44 Interaktion haben zur Aufdeckung einer weiteren Interaktion zwischen p34 und p44 geführt, die bisher noch nicht charakterisiert wurde. Die p34/p44 Interaktion ist von zentraler Bedeutung für TFIIH, was die Gegenwart mehrerer redundanter Schnittstellen zwischen p34 und p44, um die p34/p44 Interaktion abzusichern, rechtfertigt und erklären könnte, warum bislang keine Patientenmutationen in diesen Untereinheiten identifiziert wurden. Die p52 Untereinheit von TFIIH ist bekannt dafür, die ATPase-Aktivität von XPB zu stimulieren, die während der NER benötigt wird. Diese Arbeit zeigt die erste vollständige atomare strukturelle Charakterisierung von p52, die aus verschiedenen Kristallstrukturen von p52 Varianten und einer p52/p8 Variante, welche die Interaktion zwischen p52 und p8 darstellt, stammt. Das Strukturmodel von p52 bietet die Möglichkeit Interaktionen mit anderen TFIIH Untereinheiten zu analysieren. Es wurde gezeigt, dass die mittlere Domäne 2 von p52 und die N-terminale Domäne von XPB die hauptsächliche Interaktion zwischen den beiden Untereinheiten vermitteln. Eine Analyse der p52 Kristallstrukturen in neuesten publizierten cryo-Elektronenmikroskopie TFIIH-Strukturen ermöglichte die Erstellung eines Models, das zeigt, wie p52 und p8 die ATPase-Aktivität von XPB stimulieren, welche essentiell für die NER und die Transkription ist. Die strukturellen und biochemischen Erkenntnisse dieser Arbeit bieten einen wichtigen Beitrag zur Enthüllung der Architektur und Funktion von TFIIH, einem essentiellen zellulären Komplex. KW - DNS-Reparatur KW - Röntgenkristallographie KW - Strukturbiologie KW - DNA repair KW - TFIIH KW - Nucleotide excision repair KW - Nukleotid-Exzisions-Reparatur Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-168926 ER - TY - THES A1 - Xu, Wenshan T1 - Regulation of the DNA Damage Response by the Ubiquitin System T1 - Regulierung der DNA-Schadensreaktion durch das Ubiquitin System N2 - DNA damage occurs frequently during normal cellular progresses or by environmental factors. To preserve the genome integrity, DNA damage response (DDR) has evolved to repair DNA and the non-properly repaired DNA induces human diseases like immune deficiency and cancer. Since a large number of proteins involved in DDR are enzymes of ubiquitin system, it is critical to investigate how the ubiquitin system regulates cellular response to DNA damage. Hereby, we reveal a novel mechanism for DDR regulation via activation of SCF ubiquitin ligase upon DNA damage. As an essential step for DNA damage-induced inhibition of DNA replication, Cdc25A degradation by the E3 ligase β-TrCP upon DNA damage requires the deubiquitinase Usp28. Usp28 deubiquitinates β-TrCP in response to DNA damage, thereby promotes its dimerization, which is required for its activity in substrate ubiquitination and degradation. Particularly, ubiquitination at a specific lysine on β-TrCP suppresses dimerization. The key mediator protein of DDR, 53BP1, forms oligomers and associates with β-TrCP to inhibit its activity in unstressed cells. Upon DNA damage, 53BP1 is degraded in the nucleoplasm, which requires oligomerization and is promoted by Usp28 in a β-TrCP-dependent manner. Consequently, 53BP1 destruction releases and activates β-TrCP during DNA damage response. Moreover, 53BP1 deletion and DNA damage promote β-TrCP dimerization and recruitment to chromatin sites that locate in the vicinity of putative replication origins. Subsequently, the chromatin-associated Cdc25A is degraded by β-TrCP at the origins. The stimulation of β-TrCP binding to the origins upon DNA damage is accompanied by unloading of Cdc45, a crucial component of pre-initiation complexes for replication. Loading of Cdc45 to origins is a key Cdk2-dependent step for DNA replication initiation, indicating that localized Cdc25A degradation by β-TrCP at origins inactivates Cdk2, thereby inhibits the initiation of DNA replication. Collectively, this study suggests a novel mechanism for the regulation of DNA replication upon DNA damage, which involves 53BP1- and Usp28-dependent activation of the SCF(β-TrCP) ligase in Cdc25A degradation. N2 - DNA-Schäden treten häufig in Folge zellulären Fortschrittes oder durch externe Faktoren auf. Um die Integrität des Genoms zu bewahren und DNA Schäden zu reparieren, die Ursache für viele Autoimmunkrankheiten und Krebs sind, hat sich ein durch DNA Schäden getriggertes Geflecht aus Reparaturprozessen (englisch: “DNA damage response (DDR)”) entwickelt. Hierbei ist es von großem Interesse zu verstehen, wie das Ubiquitin-Proteasom-System die zelluläre Antwort auf DNA-Schäden reguliert. Wir konnten zeigen, dass die SCF Ubiquitin Ligase β-TrCP durch geschädigte DNA aktiviert wird, was einen bisher unbekannten Mechanismus für die Regulation der DDR darstellt. Für den grundlegenden Schritt der durch DNA Schäden ausgelösten Inhibition der DNA Replikation – der Abbau von Cdc25A durch die E3 Ligase β-TrCP – wird die Deubiquitinase Usp28 benötigt. Diese deubiquitiniert β-TrCP als Antwort auf DNA-Schäden und fördert dadurch seine Dimerisierung, die für die Substrat-Ubiquitinierung und dem anschließenden Abbau erforderlich ist. Hierbei unterdrückt die Ubiquitinierung eines spezifischen Lysin-Rests von β-TrCP dessen Dimerisierung. Das Schlüsselprotein vom DDR, 53BP1, oligomerisiert und assoziiert mit β-TrCP, was seine Aktivität in gesunden Zellen inhibiert. Auf DNA-Schäden hin oligomerisiert 53BP1 und wird mit Hilfe von Usp28 abhängig von β-TrCP im Nukleoplasma abgebaut. Durch den Abbau von 53BP1 wird β-TrCP freigesetzt, aktiviert und kann auf DNA Schäden reagieren. Die Deletion von 53BP1 fördert die Dimerisierung von β-TrCP. Die Reparaturmaschinerie wird daraufhin an Stellen des Chromatins rekrutiert, die in der Nähe von vermeintlichen Replikationsursprüngen liegen. Chromatin-assoziiertes Cdc25A wird dann durch β-TrCP ubiquitiniert. Die Bindung von β-TrCP an die Replikationsursprünge in Folge von DNA Schädigung wird begleitet von der Freisetzung von Cdc45, das eine entscheidende Komponente des Präinitiationskomplexes darstellt. Das Beladen von Cdc45 an die Replikationsursprünge stellt eine Schlüsselfunktion der Cdc25A-abhängigen DNA Replikationsinititation dar. Gezielter Abbau von Cdc25A durch β-TrCP an den Replikationsursprüngen inaktiviert Cdk2 und inhibiert dadurch DNA Replikation. Zusammenfassend lässt sich konstatieren, dass unsere Studien einen neuartigen Mechanismus für die Regulation der DNA Replikation auf DNA Schäden hin aufgezeigt haben, der die 53BP1- und Usp28-abhängige Aktivierung der SCF(β-TrCP) Ubiquitin Ligase im Abbau von Cdc25A beinhaltet. KW - DNS-Schädigung KW - DNS-Reparatur KW - Ubiquitin KW - DNA damage KW - Ubiquitin system Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-160064 ER - TY - THES A1 - Solvie, Daniel Alexander T1 - Molecular Mechanisms of MYC as Stress Resilience Factor T1 - Molekulare Mechanismen von MYC als Stressresistenzfaktor N2 - Cancer is one of the leading causes of death worldwide. The underlying tumorigenesis is driven by the accumulation of alterations in the genome, eventually disabling tumor suppressors and activating proto-oncogenes. The MYC family of proto-oncogenes shows a strong deregulation in the majority of tumor entities. However, the exact mechanisms that contribute to MYC-driven oncogenesis remain largely unknown. Over the past decades, the influence of the MYC protein on transcription became increasingly apparent and was thoroughly investigated. Additionally, in recent years several publications provided evidence for so far unreported functions of MYC that are independent of a mere regulation of target genes. These findings suggest an additional role of MYC in the maintenance of genomic stability and this role is strengthened by key findings presented in this thesis. In the first part, I present data revealing a pathway that allows MYC to couple transcription elongation and DNA double-strand break repair, preventing genomic instability of MYC-driven tumor cells. This pathway is driven by a rapid transfer of the PAF1 complex from MYC onto RNAPII, a process that is mediated by HUWE1. The transfer controls MYC-dependent transcription elongation and, simultaneously, the remodeling of chromatin structure by ubiquitylation of histone H2B. These regions of open chromatin favor not only elongation but also DNA double-strand break repair. In the second part, I analyze the ability of MYC proteins to form multimeric structures in response to perturbation of transcription and replication. The process of multimerization is also referred to as phase transition. The observed multimeric structures are located proximal to stalled replication forks and recruit factors of the DNA-damage response and transcription termination machinery. Further, I identified the HUWE1-dependent ubiquitylation of MYC as an essential step in this phase transition. Cells lacking the ability to form multimers display genomic instability and ultimately undergo apoptosis in response to replication stress. Both mechanisms present MYC as a stress resilience factor under conditions that are characterized by a high level of transcriptional and replicational stress. This increased resilience ensures oncogenic proliferation. Therefore, targeting MYC’s ability to limit genomic instability by uncoupling transcription elongation and DNA repair or disrupting its ability to multimerize presents a therapeutic window in MYC-dependent tumors. N2 - Tumorerkrankungen sind eine der häufigsten Todesursachen weltweit. Für die Entstehung und Entwicklung eines Tumors sind Veränderungen im Genom verantwortlich, wobei Proto-Onkogene aktiviert und Tumorsuppressorgene inaktiviert werden. Die MYC-Familie der Proto-Onkogene ist in der Mehrzahl der menschlichen Tumorerkrankungen stark dereguliert. Der genaue Mechanismus, der in MYC-getriebenen Tumoren eine Rolle spielt, ist aber weiterhin ungeklärt. In den letzten Jahrzehnten wurde die Funktion von MYC als Transkriptionsfaktor in den Vordergrund gestellt. Veröffentlichungen der letzten Jahre deuten zusätzlich auf mehrere, bisher unbekannte Funktionen hin, die unabhängig von einer bloßen Regulation von Zielgenen sind und auf eine zusätzliche Rolle bei der Erhaltung der genomischen Stabilität hinweisen. Diese Rolle wird durch wesentliche Ergebnisse dieser Doktorarbeit gestärkt. In dem ersten Teil der Doktorarbeit präsentiere ich einen Pathway, der es MYC ermöglicht, transkriptionelle Elongation und Doppelstrangbruch-Reparatur zu koppeln, wodurch genomische Instabilität in MYC-gesteuerten Tumorzellen limitiert wird. Dieser Pathway wird durch einen schnellen Transfer des PAF1-Komplexes von MYC auf die RNAPII angetrieben, bei dem HUWE1 eine essenzielle Rolle einnimmt. Der Transfer steuert die MYC-abhängige transkriptionelle Elongation und gleichzeitig die Öffnung der Chromatinstruktur. Dies geschieht durch Ubiquitylierung des Histons H2B zugunsten von sowohl transkriptioneller Elongation als auch der DNA-Doppelstrangbruchreparatur. In dem zweiten Teil der Doktorarbeit analysiere ich die Fähigkeit von MYC-Proteinen, als Reaktion auf eine Störung der Transkription und/oder Replikation multimere Strukturen bilden zu können. Diese Fähigkeit wird auch als Phasentrennung bezeichnet. Die multimere Strukturen befinden sich in der Nähe von blockierten Replikationsgabeln und rekrutieren Faktoren der DNA-Schadensreaktion und der Transkriptionsterminationsmaschinerie. Die HUWE1-abhängige Ubiquitylierung von MYC habe ich als wesentlichen Schritt der Phasentrennung identifiziert. Zellen ohne die Fähigkeit zur Bildung von Multimeren zeigen als Reaktion auf Replikationsstress exzessive genomische Instabilität und letztendlich Apoptose auf. Beide Mechanismen machen MYC zu einem Faktor, der genomische Instabilität als Resultat von unphysiologischem Transkriptions- und Replikationsstress limitiert und damit die onkogene Zellteilung gewährleistet. Eine gezielte Beeinflussung der aufgeführten Mechanismen, durch welche MYC die genomische Instabilität limitiert, kann bei MYC-abhängigen Tumoren von großem therapeutischem Nutzen sein. KW - MYC KW - Krebsforschung KW - DNS-Schädigung KW - DNS-Reparatur KW - Oncogenes Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-305398 ER -