TY - JOUR A1 - Godbole, Amod A1 - Lyga, Sandra A1 - Lohse, Martin J. A1 - Calebiro, Davide T1 - Internalized TSH receptors en route to the TGN induce local G\(_{S}\)-protein signaling and gene transcription JF - Nature Communications N2 - A new paradigm of G-protein-coupled receptor (GPCR) signaling at intracellular sites has recently emerged, but the underlying mechanisms and functional consequences are insufficiently understood. Here, we show that upon internalization in thyroid cells, endogenous TSH receptors traffic retrogradely to the trans-Golgi network (TGN) and activate endogenous Gs-proteins in the retromer-coated compartment that brings them to the TGN. Receptor internalization is associated with a late cAMP/protein kinase A (PKA) response at the Golgi/TGN. Blocking receptor internalization, inhibiting PKA II/interfering with its Golgi/TGN localization, silencing retromer or disrupting Golgi/TGN organization all impair efficient TSH-dependent cAMP response element binding protein (CREB) phosphorylation. These results suggest that retrograde trafficking to the TGN induces local G\(_{S}\)-protein activation and cAMP/PKA signaling at a critical position near the nucleus, which appears required for efficient CREB phosphorylation and gene transcription. This provides a new mechanism to explain the functional consequences of GPCR signaling at intracellular sites and reveals a critical role for the TGN in GPCR signaling. KW - G protein-coupled receptors KW - fluorescence imaging KW - hormone receptors KW - trans-Golgi network Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170375 VL - 8 IS - 443 ER - TY - THES A1 - Perpiñá Viciano, Cristina T1 - Study of the activation mechanisms of the CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3) T1 - Untersuchung zum Aktivierungsmechanismus des CXC Chemokin‐Rezeptor 4 (CXCR4) und des atypischen Chemokin‐Rezeptor 3 (ACKR3) N2 - The CXC chemokine receptor 4 (CXCR4) and the atypical chemokine receptor 3 (ACKR3) are seven transmembrane receptors that are involved in numerous pathologies, including several types of cancers. Both receptors bind the same chemokine, CXCL12, leading to significantly different outcomes. While CXCR4 activation generally leads to canonical GPCR signaling, involving Gi proteins and β‐arrestins, ACKR3, which is predominantly found in intracellular vesicles, has been shown to signal via β‐arrestin‐dependent signaling pathways. Understanding the dynamics and kinetics of their activation in response to their ligands is of importance to understand how signaling proceeds via these two receptors. In this thesis, different Förster resonance energy transfer (FRET)‐based approaches have been combined to individually investigate the early events of their signaling cascades. In order to investigate receptor activation, intramolecular FRET sensors for CXCR4 and ACKR3 were developed by using the pair of fluorophores cyan fluorescence protein and fluorescence arsenical hairpin binder. The sensors, which exhibited similar functional properties to their wild‐type counterparts, allowed to monitor their ligand-induced conformational changes and represent the first RET‐based receptor sensors in the field of chemokine receptors. Additional FRET‐based settings were also established to investigate the coupling of receptors with G proteins, rearrangements within dimers, as well as G protein activation. On one hand, CXCR4 showed a complex activation mechanism in response to CXCL12 that involved rearrangements in the transmembrane domain of the receptor followed by rearrangements between the receptor and the G protein as well as rearrangements between CXCR4 protomers, suggesting a role of homodimers in the activation course of this receptor. This was followed by a prolonged activation of Gi proteins, but not Gq activation, via the axis CXCL12/CXCR4. In contrast, the structural rearrangements at each step of the signaling cascade in response to macrophage migration inhibitory factor (MIF) were dynamically and kinetically different and no Gi protein activation via this axis was detected. These findings suggest distinct mechanisms of action of CXCL12 and MIF on CXCR4 and provide evidence for a new type of sequential signaling events of a GPCR. Importantly, evidence in this work revealed that CXCR4 exhibits some degree of constitutive activity, a potentially important feature for drug development. On the other hand, by cotransfecting the ACKR3 sensor with K44A dynamin, it was possible to increase its presence in the plasma membrane and measure the ligand‐induced activation of this receptor. Different kinetics of ACKR3 activation were observed in response to CXCL12 and three other agonists by means of using the receptor sensor developed in this thesis, showing that it is a valuable tool to study the activation of this atypical receptor and pharmacologically characterize ligands. No CXCL12‐induced G protein activation via ACKR3 was observed even when the receptor was re-localized to the plasma membrane by means of using the mutant dynamin. Altogether, this thesis work provides the temporal resolution of signaling patterns of two chemokine receptors for the first time as well as valuable tools that can be applied to characterize their activation in response to pharmacologically relevant ligands. N2 - Der CXC Chemokin‐Rezeptor 4 (CXCR4) und der atypische Chemokin‐Rezeptor 3 (ACKR3) sind heptatransmembranäre Rezeptoren, die in zahlreichen Krankheitsbildern eine Rolle spielen, wie in einigen Krebsarten. Beide Rezeptoren werden zwar von dem gleichen Chemokin CXCL12 aktiviert, allerdings mit unterschiedlichen Signalweiterleitungsmustern. Die Aktivierung von CXCR4 führt zu kanonischer GPCR Signaltransduktion über Gi‐Proteine und β‐Arrestine. Die Signalweiterleitung des Rezeptors ACKR3 hingegen, welcher hauptsächlich in intrazellulären Vesikeln vorliegt, erfolgt über ß‐Arrestinabhängige Signalwege. Es ist von großer Wichtigkeit die Dynamik und Kinetik dieser beiden Rezeptoren hinsichtlich der Aktivierung durch ihre Liganden und der Signalweiterleitung zu verstehen. In dieser Arbeit wurden verschiedene Förster‐Resonanzenergietransfer (FRET) Anwendungen kombiniert, um die frühen Phasen der Signal‐Kaskade von CXCR4 und ACKR3 zu untersuchen. Zur genaueren Aufklärung der Rezeptoraktivierung wurden intramolekulare FRET‐Sensoren entwickelt, hierzu wurden die Fluorophore Cyan‐fluoreszierendes Protein und engl. fluorescence arsenical hairpin binder verwendet. Die generierten Sensoren zeigten ähnliche funktionelle Eigenschaften wie die unveränderten Rezeptoren. Liganden‐induzierte Änderungen der Rezeptorkonformation können mittels dieser Sensoren beobachtet werden und stellen die ersten RET‐basierten Sensoren auf dem Forschungsgebiet der Chemokin‐Rezeptoren dar. Weitere FRET‐basierte Methoden wurden zur Untersuchung von Interaktionen zwischen Rezeptor und G‐Protein, Neuanordnung von Dimeren, sowie der G‐Protein Aktivierung eingesetzt und für beide Chemokin‐Rezeptoren etabliert. CXCR4 zeigte einen komplexen Aktivierungsmechanismus nach Stimulation durch CXCL12, bei welchem zunächst eine Neuordnung der Rezeptor‐Transmembrandomäne gefolgt von Neuordnungen zwischen Rezeptor und G‐Protein und zuletzt eine Neuordnung zwischen CXCR4 Protomeren erfolgte. Dies impliziert, dass im Aktivierungsprozess des Rezeptors Homodimere eine Rolle spielen. Zudem wurde eine verlängerte Gi ‐Protein Aktivierung gegenüber der Gq‐Protein Aktivierung bei CXCL12 stimuliertem CXCR4 beobachtet. Hingegen zeigte eine Stimulierung mit dem Macrophage Migration Inhibitory Factor (MIF) bei jedem Schritt der frühen Singal‐Kaskade veränderte Dynamiken und Kinetiken im Vergleich zu CXCL12. Darüber hinaus konnte keine Gi ‐Protein Aktivierung festgestellt werden. Dieser Befund zeigt individuelle Mechanismen für MIF und CXCL12 am CXCR4‐Rezeptor und liefert Belege für eine neuer Art von sequenziellen Signalweiterleitungen an GPCRs. Eine wichtige Beobachtung dieser Arbeit für eine potentielle Medikamentenentwicklung ist das CXCR4 ligandenunabhängige Aktivität zeigt. Um die Aktivierung des ACKR3 Sensors messen zu können wurde durch eine Co‐Transfektion mit K44A Dynamin eine höhere Membranständigkeit erreicht. CXCL12 und drei weiteren Agonisten zeigten am hier entwickelten ACKR3‐Sensor unterscheidbare Kinetiken. Mit diesem wertvollen Werkzeug können Liganden an diesem atypischen Rezeptor pharmakologisch charakterisiert werden. Es konnte keine CXCL12‐induzierte G‐Protein Aktivierung gemessen werden, trotz der stärkeren Präsenz an der Plasmamembran mit Hilfe der Dynamin‐Mutante. In Summe liefert diese Arbeit zum ersten Mal eine zeitliche Auflösung von Signalweiterleitungsmustern von zwei Chemokin‐Rezeptoren sowie wertvolle Werkzeuge zur Charakterisierung der frühen Phase der Signal‐Kaskade durch andere pharmakologisch relevanten Liganden. KW - G protein-coupled receptors KW - Chemokine receptors KW - GPCR signaling KW - Förster Resonance Energy Transfer KW - FRET sensors Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192371 ER - TY - JOUR A1 - Schihada, Hannes A1 - Vandenabeele, Sylvie A1 - Zabel, Ulrike A1 - Frank, Monika A1 - Lohse, Martin J. A1 - Maiellaro, Isabella T1 - A universal bioluminescence resonance energy transfer sensor design enables high-sensitivity screening of GPCR activation dynamics JF - Communications Biology N2 - G-protein-coupled receptors (GPCRs) represent one of the most important classes of drug targets. The discovery of new GCPR therapeutics would greatly benefit from the development of a generalizable high-throughput assay to directly monitor their activation or de-activation. Here we screened a variety of labels inserted into the third intracellular loop and the C-terminus of the alpha(2 Lambda)-adrenergic receptor and used fluorescence (FRET) and bioluminescence resonance energy transfer (BRET) to monitor ligand-binding and activation dynamics. We then developed a universal intramolecular BRET receptor sensor design to quantify efficacy and potency of GPCR ligands in intact cells and real time. We demonstrate the transferability of the sensor design by cloning beta(2)-adrenergic and PTH1-receptor BRET sensors and monitored their efficacy and potency. For all biosensors, the Z factors were well above 0.5 showing the suitability of such design for microtiter plate assays. This technology will aid the identification of novel types of GPCR ligands. KW - Fluorescence resonance energy transfer KW - G protein-coupled receptors KW - High-throughput screening Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228592 VL - 1 IS - 105 ER -