TY - THES A1 - Wagner, Joachim T1 - Optische Charakterisierung von II-VI-Halbleiter-Oberflächen in Kombination mit First-Principles-Rechnungen T1 - Optical Characterisation of II-VI Semiconductor Surfaces in Combination with First Principles Calculations N2 - In dieser Arbeit sind Methoden der optischen Spektroskopie, insbesondere die Ramanspektroskopie (RS) und die Reflexions-Anisotropie-Spektroskopie (RAS), angewandt worden, um die Oberflächen von II-VI Halbleitern zu charakterisieren. Für die experimentellen Untersuchungen wurde eine eigens für diesen Zweck entwickelte UHV-Optikkammer benutzt. Diese einzigartige Möglichkeit, II-VI Halbleiterproben aus einer state-of-the-art MBE-Anlage mit einer UHV-Optikanlage zu kombinieren hat gezeigt, dass optische Spektroskopie sehr gut dafür geeignet ist, strukturelle Eigenschaften, z.B. Rekonstruktionen, und chemische Bindungen an Oberflächen, sowie die damit verbundene Schwingungsdynamik zu analysieren. Neben den experimentellen Arbeiten wurden u. a. first principles Rechnungen mittels der Dichtefunktionaltheorie im Rahmen der Lokalen-Dichte-Approximation durchgeführt. Damit konnten für die Oberflächen einerseits ihre geometrischen Eigenschaften, d.h die atomare Anordnung der Oberflächenatome, und andererseits auch ihre Dynamik, d.h. die Schwingungsfrequenzen und die Auslenkungsmuster der an der Rekonstruktion beteiligten Atome der Oberfläche und der oberflächennahen Schichten, im Rahmen der Frozen-Phonon-Näherung bestimmt werden. Die Kombination von experimenteller und theoretischer Vibrationsbestimmung von Oberflächen bietet also, neben den klassischen Oberflächen-Analysemethoden wie RHEED, LEED, XPS, Auger und SXRD, ein zusätzliches Werkzeug zur Charakterisierung von Oberflächen. Da die Frozen-Phonon-Näherung nicht elementarer Bestandteil des hier benutzten DFT-Programmcodes fhi96md ist, wurde diese Erweiterung im Rahmen dieser Arbeit durchgeführt. Die theoretische Berechnung von Schwingungsfrequenzen mit dynamischen Matrizen ist in einem Unterkapitel dargestellt. Die so berechneten Schwingungsfrequenzen für verschiedene Oberflächen-Rekonstruktionen konnten erfolgreich am Beispiel der reinen BeTe(100)-Oberfläche mit den experimentell mit der UHV-Ramanspektroskopie beobachteten Frequenzen verglichen werden. So gelang erstmalig die optische identifizierung von rekonstruktionsinduzierten Eigenschwingungen einer Oberfläche. Nach detaillierter Kenntnis der BeTe(100)-Oberfläche wurde die Ramanspektroskopie als Sonde benutzt, um die Entwicklung der BeTe-Oberfläche bei unterschiedlichen Behandlungen (Modifikation) zu verfolgen. Dabei dienten die früheren Ergebnisse als Referenzpunkte, um die modifizierten Spektren zu erklären. Zusätzlich wurde ein Konzept zur Passivierung der Te-reichen BeTe(100)-Oberfläche entwickelt, um diese Proben ohne einen technisch aufwendigen UHV-Transportbehälter über grössere Entfernungen transportieren zu können (z.B. zu Experimenten an einem Synchrotron). Mit der RAS wurden auch die Oberflächen von weiteren Gruppe II-Telluriden, nämlich die Te-reiche (2x1) CdTe(100)-Oberfläche, die Te-reiche (2x1) MnTe(100)-Oberfläche und die Hg-reiche c(2x2) HgTe(100)-Oberfläche untersucht. Schließlich wurde der Wachstumsstart von CdSe auf der BeTe(100)-Oberfläche im Bereich weniger Monolagen (1-5 ML) CdSe analysiert, wobei die hohe Empfindlichkeit der Ramanspektroskopie bereits den Nachweis einer Monolage CdSe erlaubte. N2 - In this thesis optical spectroscopy, especially Raman spectroscopy (RS) and reflection anisotropy spectroscopy (RAS), was used for characterisation of II-VI-semiconductor surfaces. For the experimental studies a specially designed UHV-optical chamber was applied. The unique combination of a state of the art molecular beam epitaxy (MBE) facility with this UHV-optical chamber distinctly proved that optical spectroscopy is a powerfull tool for analyzing the structural properties (e.g. reconstructions) and the chemical bindings at a surface, as well as its dynamical properties. Beside the experimental activities, first principles calculations within the framework of density functional theory (DFT) and local density approximation (LDA) were performed. Therefore the geometrical, statical properties (e.g. atomic positions) of the surface and near-surface atoms could be determined. Additionally, their dynamical properties (e.g. displacement patterns and vibrational frequencies) were calculated with the frozen phonon approximation. This combination of experimental and theoretical determination of the surface dynamics offers an additional tool for surface characterisation beside the classical methods for surface analysis like RHEED, LEED, XPS, Auger and SXRD. Because frozen phonon calculations do not constitute an integral part of the available DFT programm code fhi96md, the extension was performed as a part of this thesis. The theoretical calculation of vibration frequencies with dynamical matrices is described in one of the subsections. The frequencies calculated in this way for different surface reconstructions were successfully compared with the experimentally observed frequencies in the case of pure BeTe(100) surfaces. Thus, the first optical identification of reconstruction-induced surface eigenvibration modes was realized. After this detailed knowledge of the BeTe(100) surface Raman spectroscopy was used as a probe to track the changes of the BeTe surface under different modifications. In doing so the previous result on the pure BeTe surfaces served as references to explain the modified spectra. Besides a concept for passivation of the tellurium rich BeTe(100) surface was developed to ease the transport to far away laboratories without using extensive UHV facilities. Additionally the surfaces of further group II-tellurides (e.g. Te-rich (2x1) CdTe(100), Te-rich (2x1) MnTe(100) and Hg-rich c(2x2) HgTe) has been investigated with the RAS. Finally the start of the CdSe growth on the BeTe(100) surface was analyzed in the region of 1-5 monolayers of CdSe. Within these experiments a high sensitivity for detecting even one monolayer of CdSe was achieved by Raman spectroscopy. KW - Zwei-Sechs-Halbleiter KW - Halbleiteroberfläche KW - Optische Eigenschaft KW - optisch KW - spektroskopie KW - Halbleiter KW - Oberfläche KW - DFT KW - optical KW - spectroscopy KW - semiconductor KW - surface KW - DFT Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8722 ER - TY - THES A1 - Schumm, Marcel T1 - ZnO-based semiconductors studied by Raman spectroscopy: semimagnetic alloying, doping, and nanostructures T1 - Ramanspektroskopische Untersuchung ZnO-basierte Halbleiter: Semimagnetische Legierung, Dotierung und Nanostrukturen N2 - ZnO-based semiconductors were studied by Raman spectroscopy and complementary methods (e.g. XRD, EPS) with focus on semimagnetic alloying with transition metal ions, doping (especially p-type doping with nitrogen as acceptor), and nanostructures (especially wet-chemically synthesized nanoparticles). N2 - ZnO-basierte Halbleiter wurden mittels Ramanspektroskopie und komplementärer Methoden (z.B. XRD, EPS) untersucht mit den Schwerpunkten semimagnetische Legierung mit Übergangsmetallen, Dotierung (vor allem p-Dotierung mit Stickstoff als Akzeptor) und Nanostrukturen (vor allem nass-chemisch hergestellte Nanopartikel). KW - Wide-gap-Halbleiter KW - Würzburg / Sonderforschungsbereich II-VI-Halbleiter KW - Verbindungshalbleiter KW - Zwei-Sechs-Halbleiter KW - Semimagnetischer Halbleiter KW - n-Halbleiter KW - Niederdimensionaler Halbleiter KW - p-Halbleiter KW - Kolloider Halbleiter KW - Magnetisch KW - Ramanspektroskopie KW - Raman KW - Zinkoxid KW - ZnO KW - DMS KW - Raman spectroscopy KW - Raman KW - Zinc oxide KW - ZnO KW - DMS KW - Diluted Magnetic Semiconductors KW - doping KW - secondary phases Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-37045 ER - TY - THES A1 - Schumacher, Claus T1 - Herstellung und Charakterisierung von Nanostrukturen auf der Basis von II-VI-Materialien mittels der Schattenmaskentechnologie T1 - Fabrication and characterisation of nano structures based on II-VI-materials utilising the shadow mask technology N2 - Warum eigentlich Schattenmasken als neues alternatives Verfahren zur lateralen Strukturierung? Alle bislang üblichen Verfahren zur Herstellung lateral begrenzter Halbleiter-Kristalle strukturieren die zuvor epitaktisch flächig aufgewachsenen Schichten nachträglich. Hierdurch können Probleme entstehen. Etwa erzeugen nach einem nasschemischen Ätzprozess freistehende Quantentröge im Randbereich Oberflächenzustände, die zu nicht strahlender Rekombination führen können und daher die Lichtausbeute reduzieren. Der Prozess des erneuten Überwachsens solcher nachträglich geätzter Strukturen ist bislang noch nicht reproduzierbar. Weitere alternative Techniken, wie das Wachstum selbstorganisierter Quantenpunkte oder das it in-situ Spalten, bieten entweder noch keine befriedigende Kontrollmöglichkeit der Strukturgröße oder sind für eine industrielle Anwendung nur wenig praktikabel. Deshalb richtete sich der Blick auf das aus der III-V-Epitaxie bekannte Schattenmasken-Verfahren zur Herstellung makroskopischer sogenannter ,,nipi-Strukturen''. Diese zeigen den interessanten Effekt, dass sich die durch eine Schattenmaske wachsende Struktur in Wachstumsrichtung während des Wachstums von selbst zuspitzt. Die Größe der Masken-Apertur kann dadurch in einer Größenordnung bleiben, wie sie durch ein ultra-violett optisch lithographisches Verfahren hergestellt werden kann. Durch die Maske wächst dennoch, unterstützt von Schatten- und Selbstorganisationseffekten, ein Halbleiter-Kristall, der an seiner Spitze die Ausdehnung einer Nanostruktur hat. Im Rahmen dieser Arbeit gelang es erstmals mittels der Schattenmaskentechnologie eine ZnSe-Draht-Struktur herzustellen, deren Ausdehnung an der Spitze nur noch 25~nm beträgt. Da dieses Verfahren erstmals zur Herstellung von II-VI-Halbleiter-Schichten etabliert wurde, konnte auf keinerlei Vorarbeiten zurückgegriffen werden. Vor der Herstellung geeigneter Schattenmasken mussten zunächst geeignete Belichtungs-Masken für die optische Lithographie entworfen werden, bevor die Ätztechniken zur Herstellung der Schattenmasken selbst optimiert werden konnten. Am Ende der Schattenmaskenentwicklung stand ein Verfahren zur Präparation einer verlässlichen Startoberfläche für die anschließende II-VI-Epitaxie, ohne die ein reproduzierbares Wachstum durch die Schattenmaske nicht möglich ist. Nachdem die technologische Seite abgearbeitet war, mussten anhand geeigneter Epitaxieexperimente die Einflüsse durch die geänderten Wachstumsbedingungen erforscht werden. Insbesondere spielen beim Wachstum durch Schattenmasken Oberflächeneffekte wie Diffusion oder die Orientierung der Masken-Apertur bzgl. der Kristallrichtung eine wesentliche Rolle. Für die in dieser Arbeit verwendete Geometrie des Wachstums (Gruppe-II- und Gruppe-VI-Spezies werden aus bzgl. der Masken-Apertur spiegelbildlichen Raumwinkelbereichen angeboten) wurde herausgefunden, dass die Maskenöffnung entlang der [1-10]-Kristallrichtung orientiert sein sollte. Entlang dieser Richtung sind die Se-Dimere einer Se-reich rekonstruierten Oberfläche orientiert und somit verläuft die Vorzugsdiffusionsrichtung senkrecht zum Draht. Hierdurch können diffusionsgestützt schärfer definierte Flanken des Drahtes wachsen, als bei einer um 90° gedrehten Geometrie. Eigentlich soll nicht nur eine binäre Drahtstruktur entstehen, sondern es soll zum Beispiel ein ZnCdSe-Quantentrog in einen Draht aus einem geeigneten Barriere-Material eingebettet werden. Bei diesen Versuchen stellte sich anhand von Tieftemperatur-PL- und charakteristischen Röntgenphotonen-Spektren heraus, dass Cadmium in einem epitaktisch gewachsenen Draht stärker als andere Spezies auf der Wachstumsoberfläche diffundiert. Eine kontrollierte Deposition eines ZnCdSe-Quantentroges ist nicht möglich. Um Diffusionseffekte zu vermeiden kann statt eines ternären Troges ein binärer in eine nun quaternäre Barriere eingebettet werden. Dieser Ansatz wird bereits in einer parallel zu dieser Arbeit begonnenen Dissertation erfolgreich verfolgt. Bei der Etablierung eines neuen Verfahrens zur Herstellung von Halbleiter-Kristallen müssen auch Aussagen über die strukturellen Eigenschaften der gewachsenen Strukturen getroffen werden. Hierzu wurden die mittels eines ,,Lift-Off''-Prozesses nun freistehenden Drahtstrukturen einer Röntgenstrukturanalyse unterzogen. Die reziproken Gitterkarten zeigen bei senkrechter Orientierung der Beugungsebene relativ zum Draht, dass der Schichtreflex nicht auf der Relaxationsgeraden liegt. Bei einer rein plastischen Relaxation eines Halbleiter-Kristalls müsste dies jedoch für beide Orientierungen der Beugungsebene (senkrecht und parallel zum Draht) der Fall sein. Der Schichtreflex ist in Richtung des Substratreflexes verschoben. Der Netzebenenabstand ist somit also verkleinert. Eine mögliche Erklärung hierfür ist die zylinderförmige ,,Verbiegung'' der Atomebenen im Realraum und somit der Netzebenen im reziproken Raum. Die Überlegungen führen somit auf eine zusätzlich elastische anstelle auschließlich plastischen Relaxation des Kristalls. Um eine solche These erhärten zu können wurde auf der Basis der aus den REM- und AFM-Bildern ausgewerteten Geometrie der Drahtstrukturen ein atomares Modell eines verspannten Kristalls erstellt. Mittels eines Monte-Carlo-Algorithmus' kann dieses Modell seine eingeprägte Verspannungsenergie elastisch abbauen. Die Fouriertransformierte des Realraumbildes des elastisch relaxierten Drahtes lässt sich direkt mit den reziproken Gitterkarten vergleichen. Mittels dieser Simulation konnte die vertikale Verschiebung des Schichtreflexes unmittelbar den zylindrisch ,,verbogenen'' Kristallebenen zugeordnet werden. Ferner ermöglichen die Simulationen erstmalig die qualitative Interpretation der Beugungsmessungen an den Schattenmasken selbst. Die im Rahmen der Dissertation von H.R.~Ress vorgenommenen Beugungsmessungen an den Schattenmasken zeigen neben der vertikalen Verschiebung des AlGaAs-Schichtreflexes charakteristische diffuse Streifen um den Schichtreflex, die bislang unverstanden waren. Die Simulationen zeigen, dass diese Streifen erst bei der elastischen Relaxation des Drahtes durch die konvexe Wölbung der Drahtflanke entstehen. Diese diffusen Streifen lassen sich in den in dieser Arbeit gewachsenen Drähten aus II-VI-Halbleitern nicht unmittelbar nachweisen. Da die Schattenmasken bedingt durch das Herstellungsverfahren eine Rauigkeit der Schattenkanten von bis zu 150~nm aufweisen sind auch die Flanken der durch die Masken gewachsenen Strukturen stark aufgeraut. Deshalb streuen die den Draht begrenzenden Fassetten nicht kohärent und bieten entsprechend keine definierte Abbruchbedingung der Fouriertransformation. N2 - What is the motivation for the establishment of an alternative technique for lateral structuring? Till date, for definition of semiconductor nano structures, the established technology relies on the post-growth, ex-situ structuring of layer samples. The processes involved in this technology may cause a number of problems. For instance, wet chemical etching of quantum wires generate surface states which result in non radiative recombination of carriers and hence reduce the optical efficiency. Secondly, the process of overgrowth of such etched structures is not well controlled so far. Further alternative techniques like self organised growth of quantum dots or in-situ cleaved edge overgrowth either do not provide a satisfying size control or are too laborious for them to be industrially practicable. Thus, efforts were directed towards the use of shadow mask technique, a process well established for the fabrication of III-V n-i-p-i structures. These structures exhibit the interesting effect of an acuminating crystal during growth. A standard optical lithography process which achieves mask apertures down to 300~nm is sufficient: Driven by the effect of shadow and self organisation, the structure growing within the growth cavity has nano scale dimension at its tip. In the course of the work we succeeded, for the first time, to fabricate a ZnSe wire structure with a tip width of only 25nm. Since this technique was applied to the II-VI semiconductors for the first time, no relevant literature was available for the the preparatory work. Prior to the fabrication of suitable shadow masks, it is required to (a) design lithographic masks and (b) establish appropriate etching procedures. Additionally, the procedure requires the preparation of a reliable III-V surface for the subsequent II-VI growth. After successful implementation of the techniques, suitable experiments were developed which enabled the investigation of the growth conditions for the growth within a growth cavity. In particular, surface effects, like diffusion or the orientation of the mask aperture with respect to the symmetry directions of the crystal, play an considerable role. For the samples dicussed in this work, an alignment of the effusion cells was performed such that, group II and VI molecular beams impinged on the substrate at equal incident angles with respect to the surface normal. In this geometry, it was found that the highest lateral precision is achieved with mask apertures parallel to the [1-10] crystal direction. The selenium dimers are oriented along this direction and hence the main diffusion occures perpendicular to the wire. Hence the edges of the forming wire are more pronounced in this orientation. Originally, not only binary but also ternary quantum structures, for instance ZnCdSe quantum wells embedded into ZnSe barriers, were planned. Low temperature PL and EDAX experiments revealed that the cadmium diffusion coefficient is much larger than those of zinc and selenium. Therefore, a homogeneous cadmium distribution inside the ternary quantum well alloy, could not be achieved. To overcome this problem of segregation, a binary well can be embedded within a quaternary barrier. This approach was successfully pursued in a parallel endeavour. When a novel technique for fabrication of semiconductor structures is established, it is indespensable to provide evidence of high structural quality of the grown crystals. Therefore, the free standing wire structures were probed by high resolution x-ray diffraction analysis after the removal of the mask (lift-off process). The reciprocal space maps acquired in these experiments exhibit that the layer reflection does not lie on the line of relaxation only when the plane of diffraction is aligned perpendicular to the wire. Considering only plastic relaxation of the lattice, a deviation from the line of relaxation should occur for neither parallel nor perpendicular orientation. The layer reflection has moved towards the substrate reflection. The distance of lattice planes has therefore decreased. One possible explanation for this is a cylindrically shaped ''bending'' of atom planes in real space and consequentially of the lattice planes in reciprocal space. In conclusion, an additional elastic, instead of solely plastic relaxation, of the crystal has to be considered. To substantiate such a thesis, an atomic model was developed. The geometry of the modelled wire structures was choosen, based on the SEM and AFM images. The strain incorporated into the modelled crystal was relaxed by means of a Monte Carlo algorithm. The fourier transform of the real space image is related to the reciprocal space map directly. Based one this simulations, the vertically displacement of the layer reflection can be attributed to cylindrically bending of the lattice planes. Furthermore, these simulations enabled a qualitative interpretation of the diffractograms of the shadow masks themselves. In the course of this work, diffraction measurements were carried out on the III-V shadow masks by H.R. Ress. Apart from the vertical displacement of the AlGaAs layer reflection they were found to exhibit a characteristic cross-shaped diffuse reflection surrounding the layer reflection. This effect was not understood until now. The simulations clarified these features as due to a convex curvature of the wire's edges. Due to the low scattering volume of the II-VI wire structures fabricated in this work, these diffuse intensity is not observeable. Additionally, the fabrication technique itself brings in a roughness of the mask's shadow edges of roughly 150~nm, which in turn affects the roughness of wire structure. Hence the bounding facets of the wire do not scatter coherently and hence no defined termination condiction of the fourier transform is defined. KW - Zwei-Sechs-Halbleiter KW - Nanostruktur KW - Molekularstrahlepitaxie KW - Fernsehmaske KW - Schattenmaske KW - Halbleiter KW - MBE KW - Quantendraht KW - Nanostruktur KW - shadow mask KW - semiconductor KW - mbe KW - quantum wire KW - nano structure Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-8754 ER - TY - THES A1 - Richter, Georg T1 - Nachweis der elektrischen Spin-Injektion in II-VI-Halbleiter mittels Messung des elektrischen Widerstandes T1 - Experimental proof of electrical spin injection into II-VI semiconductors by measuring the electric resistance N2 - Die bisherigen Ergebnisse der elektrischen Spininjektion in Halbleiter im diffusivem Regime werden mit dem Modell von Schmidt et. al gut beschrieben. Eine Folgerung aus diesem Modell ist, dass n-dotierte, verdünnte magnetische Halbleiter ("diluted magnetic semiconductors", DMS) als Injektor-Materialien für die elektrische Spininjektion in Halbleiter gut geeignet sind. Im Jahr 1999 wurde darüber hinaus die elektrische Injektion von einem DMS in einem nicht magnetisch dotierten Halbleiter ("non magnetic semiconductors", NMS) mit optischen Mitteln nachgewiesen. Die elektrischen Eigenschaften des Metall-Halbleiter-Kontaktes vom Materialsystem n-(Be,Zn,Mn)Se - n-(Be,Zn)Se wurden untersucht und optimiert, wobei spezifische Kontakwiderstände von bis zu ca. 2 10^-3 Ohm cm^2 bei 4 K erreicht wurden. Der Kontakt zwischen n-(Be,Zn,Mn)Se und n-(Be,Zn)Se ist unkritisch, weil der auftretende Leitungsband-Offset lediglich 40 meV beträgt. Die Spininjektionsmessungen wurden an Bauteilen mit einem adaptiertem Design der Transmission-Line Messungen ("TLM") durchgeführt. Bei diesem Materialsystem wurde am Gesamtbauteil ein positiver Magnetowiderstand von bis zu 25 % detektiert. Da sowohl der intrinsische Magnetowiderstand der einzelnen Halbleiterschichten negativ bzw. konstant war, als auch kein besonderes Magnetowiderstandsverhalten an der Metall-Halbleiter-Grenzschicht festgestellt werden konnte, kann dieser Magnetowiderstand als erster elektrischer Nachweis einer Spininjektion in einen Halbleiter angesehen werden. Die bei geringeren Temperaturen (300 mK und 2 K) bereits bei kleineren B-Feldern eintretende Sättigung des Widerstandes ist darüberhinaus mit der Temparaturabhängigkeit der Zeeman-Aufspaltung des DMS in Einklang zu bringen. Eine systematische Untersuchung dieses "Large Magnetoresistance" Effektes von der Dotierung der beteiligten Halbleiter zeigt hingegen ein komplexeres Bild auf. Es scheint ein optimales Dotierregime, sowohl für den DMS als auch für den NMS zu geben. Höhere oder geringere Dotierung reduzieren die relative Größe des positiven Magnetowiderstandes. Auch bei stark unterschiedlich dotierten DMS- und NMS-Schichten tritt eine (partielle) Unterdrückung des Magnetowiderstandes auf, in Übereinstimmung mit dem Modell. Dies lässt den Schluss zu, dass neben einer, der Spininjektion abträglichen, großen Differenz der Ladungsträgerdichten, evtl. auch die Bandstrukturen der beteiligten Halbleiter für die Spininjektionseffekte von Bedeutung ist. Um die elektrische Spininjektion auch in der technologisch wichtigen Familie der III/V Halbleiter etablieren zu können, wurde die elektrische Spininjektion von n-(Cd,Mn)Se in n-InAs untersucht. Basierend auf den Prozessschritten "Elektronenstrahlbelichtung" und "nasschemisches Ätzen" wurde eine Ätztechnologie entwickelt und optimiert, bei der die Ätzraten über die zuvor durchgeführte EBL kontrollierbar eingestellt werden können. Mesas mit Breiten von bis zu 12 nm konnten damit hergestellt werden. Untersuchungen zur elektrischen Spininjektion von (Cd,Mn)Se in InAs wurden mit Stromtransport senkrecht zur Schichtstruktur durchgeführt. Erste Messungen deuten bei niedrigen Magnetfeldern (B< 1,5 T) auf eine ähnliche Abhängigkeit des Gesamtwiderstand vom externen Feld hin wie im Materialsystem (Be,Zn,Mn)Se - (Be,Zn)Se. Allerdings tritt bei höheren Feldern ein stark negativer Magnetowiderstand des Gesamtbauteils auf, der qualitativ einen ähnlichen Verlauf zeigt wie die (Cd,Mn)Se-Schicht allein. Da die I/U Kennlininen des Gesamtbauteils Nichtlinearitäten aufweisen, können Tunneleffekte an einer oder mehrerer Barrieren eine wichtige Rolle spielen. Ob durch diese Tunneleffekte eine elektrische Spinijektion induziert wird, kann noch nicht abschließend geklärt werden. Wünschenswert ist daher eine weitere Charakterisierung der Einzelschichten. Ein weiteres Ziel ist, in Verbindung mit den oben angeführten technologischen Vorbereitungen, eine durch Nanostrukturierung ermöglichte, delokale Messung des Magnetowiderstand. Durch dieses Messverfahren könnten etwaige Tunnel-Effekte an der Metall-DMS Schicht zwanglos von denen an der DMS-NMS Grenzschicht getrennt werden. N2 - This work deals with electrical spin injection in the diffusive regime. Results published up to now can be satisfactorily explained by the model of Schmidt et. al. As a consequence of the model, n-doped diluted magnetic semiconductors (DMS) are expected to be particularly suitable as injectors for electrical spin injection into non magnetic semiconductors (NMS). Furthermore electrical spin injection from a DMS into a NMS was confirmed by optical means in 1999. The electrical properties of the metal-semiconductor contact of the n doped (Be,Zn,Mn)Se and (Be,Zn)Se were investigated and optimized. Specific contact resistance values down to approx. 2 10^{-3} Ohm cm^2 could be reached at 4 K. The resistance at the interface between n-(Be,Zn,Mn)Se and n-(Be,Zn)Se can be neglected due to a small conduction band offset of only 40 meV. For spin injection experiments, devices with an adapted tranmission line design were fabricated. A relative magnetoresistance of the device of up to +25 % was achieved. In contrast, the intrinsic magnetoresistance of the individual semiconductor layers was negative or constant. In addition, no magnetoresistance at the metal semiconductor interface could be observed. Hence, the magnetoresistance of the device can be regarded as the first electrical proof of spin injection into a semiconductor. At low temperatures (300 mK and 2 K) saturation of the magnetoesistance takes place at lower fields. This can be assigned to the temperature dependence of the Zeeman-splitting in the DMS. A systematic study of this "Large Magnetoresistance" effect yields a complex dependency on the doping level. It appears that an optimal doping regime exists, both for the DMS and the NMS layer. Departures from these values reduce the relative magnitude of the magnetoresistance. Moreover very different doping levels of the DMS and NMS Layers result in a (partial) suppression of the magnetoresistance, consistent with the model. Thus, not only large differences of the doping levels, but also the band structures of the involved layers may have an impact on electrical spin injection. In order to establish electrical spin injection in III/V semiconductors the material system n-(Cd,Mn)Se / n-InAs was investigated. A new etching technology was developed for InAs-(Al,Ga)Sb, combining the steps of "electron beam exposure" and "wet chemical etching". This combination leads to etch rates which can be reproducibly adjusted by prior electron beam exposure. Mesas with widths down to 12 nm were achieved. Experiments for electrical spin injection from (Cd,Mn)Se into InAs were performed with current direction perpendicular to the layers. First measurements up to moderate fields (B< 1,5 T) indicated a dependency of the resistance on the external field similiar to that of the material (Be,Zn,Mn)Se - (Be,Zn)Se. Indeed, at higher fields the device exhibits a large negative magnetoresistance comparable to the single (Cd,Mn)Se layer. The I/V curves of the device are nonlinear, so tunneling effects in one or several of the interfaces may play a major role. It is not clear yet if these effects induce an electrical spin injection. Hence, further electrical characterization of the involved layers are called for. Furthermore a non-local measurement of the magnetoresistance could help in distinguishing between tunneling effects at the metal semiconductor interface and those between DMS and NMS. KW - Zwei-Sechs-Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - Spin-Injektion KW - Halbleiter KW - Magnetowiderstand KW - Spin-Polarisation KW - spin injection KW - semiconductor KW - magnetoresistance KW - spin polarization Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-10911 ER - TY - THES A1 - Obert, Michael T1 - Mikroresonatoren auf der Basis von II-VI-Halbleitern mit ein- und dreidimensionalem photonischem Einschluß T1 - II-VI-semiconductor based microcavities with one- and threedimensional photonic confinement N2 - Gegenstand der vorliegenden Arbeit waren II-VI-Halbleiter basierende Mikroresonatoren. Die Ziele der Arbeit bestanden dabei hauptsächlich in: 1. Untersuchung nichtlinearer Emission und starker Exziton-Photon-Kopplung bei eindimensionalem photonischem Einschluß auch bei hohen Leistungsdichten und Temperaturen 2. Erzeugung dreidimensionalen photonischen Einschlusses 3. Untersuchung nichtlinearer Emission in photonischen Punkten 4. Nachweis starker Kopplungseffekte in photonischen Punkten N2 - Topic of this work were II-VI-semiconductor based microcavities. The main goals were: 1. study of nonlinear emission and strong exciton photon coupling in structures with one-dimensional photonic connement, even at elevated excitation power densities and temperatures 2. preparation of three-dimensional photonic confinement 3. study of nonlinear emission from photonic dots 4. proof of strong coupling in photonic dots KW - Optischer Resonator KW - Mikrooptik KW - Zwei-Sechs-Halbleiter KW - Mikroresonator KW - photonischer Punkt KW - II-VI-Halbleiter KW - Polariton KW - microcavity KW - photonic dot KW - II-VI-semiconductor KW - polariton Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-13934 ER - TY - THES A1 - Lentze, Michael T1 - Spin-flip Raman Untersuchungen an semimagnetischen II-VI Halbleiter-Quantentrögen und Volumenproben T1 - Spin-flip-Raman studies of semimagnetic II-VI heterostructures N2 - Im Zentrum dieser Arbeit standen ramanspektroskopische Untersuchungen der elektronischen spin-flip-Übergänge an semimagnetischen (Zn,Mn)Se Proben. Hierbei wurden sowohl Quantentrogstrukturen untersucht als auch volumenartige Proben. Ziel der Forschung war dabei, ein tieferes Verständnis der Wechselwirkungen der magnetischen Ionen mit den Leitungsbandelektronen der Materialien zu gewinnen. Im Hinblick auf mögliche zukünftige spin-basierte Bauelemente lag das Hauptaugenmerk auf dem Einfluss von n-Dotierung bis zu sehr hohen Konzentration. Hierfür standen verschiedene Probenreihen mit unterschiedlichen Dotierungskonzentrationen zur Verfügung. N2 - In the present doctoral thesis, spin flip Raman studies of semimagnetic (Zn,Mn)Se samples were in the focus of interest. Quantum wells as well as bulk-like materials were investigated. The main goal was a better understanding of the exchange interaction behaviour of heavily n-doped semimagnetic samples. The influence of doping on the exchange interaction is of special relevance with regard to spintronics applications. Several series of high quality MBE-grown (Zn,Mn)Se -samples samples were available. KW - Dotierter Halbleiter KW - Spin flip KW - Raman-Spektroskopie KW - Zinkselenid KW - Mangan KW - Zwei-Sechs-Halbleiter KW - Würzburg / Sonderforschungsbereich II-VI-Halbleiter KW - Dotierung KW - n-Halbleiter KW - Niederdimensionaler Halbleiter KW - semimagnetic semiconductor KW - II-VI heterostructures KW - spin-flip Raman spectroscopy KW - n-doping Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-34834 ER - TY - THES A1 - König, Markus T1 - Spin-related transport phenomena in HgTe-based quantum well structures T1 - Spin-bezogene Transportphänomene in HgTe-basierten Quantentrogstrukturen N2 - Within the scope of this thesis, spin related transport phenomena have been investigated in HgTe/HgCdTe quantum well structures. This material exhibits peculiar band structure properties, which result in a strong spin-orbit interaction of the Rashba type. An inverted band structure, i.e., a reversed ordering of the energy states in comparison to common semiconductors, is obtained for quantum well layers above a critical thickness. Furthermore, the band structure properties can be controlled in the experiments by moderate gate voltages. Most prominently, the type of carriers in HgTe quantum wells can be changed from n to p due to the narrow energy gap. Along with the inverted band structure, this unique transition is the basis for the demonstration of the Quantum Spin Hall state, which is characterized by the existence of two one-dimensional spin-polarized edge states propagating in opposite directions, while the Fermi level in the bulk is in the energy gap. Since elastic scattering is suppressed by time reversal symmetry, a quantized conductance for charge and spin transport is predicted. Our experiments provide the first experimental demonstration of the QSH state. For samples with characteristic dimensions below the inelastic mean free path, charge conductance close to the expected value of 2e^2/h has been observed. Strong indication for the edge state transport was found in the experiments as well. For large samples, potential fluctuations lead to the appearance of local n-conducting regions which are considered to be the dominant source of backscattering. When time reversal symmetry is broken in a magnetic field, elastic scattering becomes possible and conductance is significantly suppressed. The suppression relies on a dominant orbital effect in a perpendicular field and a smaller Zeeman-like effect present for any field direction. For large perpendicular fields, a re-entrant quantum Hall state appears. This unique property is directly related to the non-trivial QSH insulator state. While clear evidence for the properties of charge transport was provided, the spin properties could not be addressed. This might be the goal of future experiments. In another set of experiments, the intrinsic spin Hall effect was studied. Its investigation was motivated by the possibility to create and to detect pure spin currents and spin accumulation. A non-local charging attributed to the SHE has been observed in a p-type H-shaped structure with large SO interaction, providing the first purely electrical demonstration of the SHE in a semiconductor system. A possibly more direct way to study the spin Hall effects opens up when the spin properties of the QSH edge states are taken into account. Then, the QSH edge states can be used either as an injector or a detector of spin polarization, depending on the actual configuration of the device. The experimental results indicate the existence of both intrinsic SHE and the inverse SHE independently of each other. If a spin-polarized current is injected from the QSH states into a region with Rashba SO interaction, the precession of the spin can been observed via the SHE. Both the spin injection and precession might be used for the realization of a spin-FET similar to the one proposed by Datta and Das. Another approach for the realization of a spin-based FET relies on a spin-interference device, in which the transmission is controlled via the Aharonov-Casher phase and the Berry phase, both due to the SO interaction. In the presented experiments, ring structures with tuneable SO coupling were studied. A complex interference pattern is observed as a function of external magnetic field and gate voltage. The dependence on the Rashba splitting is attributed to the Aharonov-Casher phase, whereas effects due to the Berry phase remain unresolved. This interpretation is confirmed by theoretical calculations, where multi-channel transport through the device has been assumed in agreement with the experimental results. Thus, our experiments provide the first direct observation of the AC effect in semiconductor structures. In conclusion, HgTe quantum well structures have proven to be an excellent template for studying spin-related transport phenomena: The QSHE relies on the peculiar band structure of the material and the existence of both the SHE and the AC effect is a consequence of the substantial spin-orbit interaction. While convincing results have been obtained for the various effects, several questions can not be fully answered yet. Some of them may be addressed by more extensive studies on devices already available. Other issues, however, ask, e.g., for further advances in sample fabrication or new approaches by different measurements techniques. Thus, future experiments may provide new, compelling insights for both the effects discussed in this thesis and, more generally, other spin-orbit related transport properties. N2 - Im Rahmen dieser Arbeit wurden spin-bezogene Transportphänomene in HgTe/HgCdTe-Quantentrogstrukturen untersucht. Dieses Materialsystem weist besondere Bandstruktureigenschaften auf, die u.a. zu einer starken Rashba-Spin-Bahn-Wechselwirkung führen. Eine invertierte Bandstruktur, d.h. eine umgekehrte Anordnung der energetischen Zustände im Vergleich zu üblichen Halbleitern, ergibt sich für Quantentrogschichten oberhalb einer kritischen Dicke. Darüber hinaus können die Bandstruktur-Eigenschaften im Experiment mittels moderater Gatespannungen kontrolliert werden. Hervorzuheben ist, dass die Art der Ladungsträger im HgTe-Quantentrog aufgrund der geringen Bandlücke von n- nach p-Typ geändert werden kann. Dieser einzigartige Übergang bildet zusammen mit der invertierten Bandstruktur die Grundlage für den Nachweis der Quanten-Spin-Hall-Zustands, bei dem sich zwei eindimensionale spinpolarisierte Randkanäle in entgegen gesetzte Richtung ausbreiten, während die Fermi-Energie im Probeninneren in der Bandlücke liegt. Da elastische Streuprozesse aufgrund der Zeitumkehr-Invarianz verboten sind, ist der Leitwert für Ladungs- und Spintransport quantisiert. Unsere Messungen liefern den ersten experimentellen Nachweis des QSH-Zustands. Für Proben mit charakteristischen Abmessungen unterhalb der inelastischen freien Weglänge wurde ein Leitwert nahe des theoretisch erwarteten Wertes von 2e^2/h beobachtet. Die Experimente lieferten außerdem deutliche Anzeichen für den Randkanaltransport. In größeren Proben verursachen Potenzialfluktuationen lokale n-leitende Bereiche, die als Hauptursache für Rückstreuung angesehen werden können. Wird die Zeitumkehr-Invarianz im Magnetfeld gebrochen, können elastische Streuprozesse auftreten und der Leitwert sinkt deutlich. Die Ursache dafür sind ein dominanter orbitaler Effekt für senkrechte Felder sowie ein schwächerer Zeeman-ähnlicher Effekt für beliebige Feldrichtungen. Bei starken senkrechten Feldern kommt es zu einem Wieder-Eintritt in den Quanten-Hall-Zustands, was direkt mit dem nicht-trivialen isolierenden Zustand des QSH-Effekts verknüpft ist. Während die Messungen einige Eigenschaften des Ladungstransports deutlich belegen, können die Spineigenschaften nicht untersucht werden. Dies kann jedoch ein Ziel zukünftiger Messungen sein. Außerdem wurde der intrinsische Spin-Hall-Effekt untersucht, um die Erzeugung von Spinungleichgewichten und reinen Spinströmen nachzuweisen. Eine nicht-lokale Spannung, die auf den SHE zurückzuführen ist, wurde in einer p-leitenden H-förmigen Struktur beobachtet und liefert somit den ersten rein elektrischen Nachweis des SHE in einem Halbleiter-System. Ein direkterer Weg zur Untersuchung von Spin-Hall-Effekten ergibt sich, wenn die Spinpolarisation der QSH-Randkanäle berücksichtigt wird. Dabei können die QSH-Kanäle - abhängig von der Probenkonfiguration - eine Spinpolarisation wahlweise injizieren oder detektieren. Die experimentellen Ergebnisse weisen unabhängig voneinander den intrinsischen SHE und den inversen SHE nach. Wenn durch die QSH-Kanäle ein spin-polarisierter Strom in ein Gebiet mit Rashba-Spin-Bahn-Wechselwirkung injiziert wird, kann die resultierende Spinpräzession mittels des SHE beobachtet werden. Sowohl die Spininjektion als auch die Präzession können zur Umsetzung eines Spin-FETs verwendet werden, wie er von Datta und Das vorgeschlagen wurde. Eine andere Herangehensweise zur Realisierung eines spin-basierten FETs beruht auf einem Spin-Interferenz-Bauteil, in dem die Transmission über Spin-Bahn-abhängige Phasen - die Aharonov-Casher-Phase und die Berry-Phase - gesteuert wird. Bei der Untersuchung von Ringstrukturen mit variabler Spin-Bahn-Wechselwirkung zeigt sich bei einer Variation des Magnetfeld und der Gate-Spannung ein komplexes Interferenzmuster. Die Abhängigkeit von der Rashba-Aufspaltung wird der Aharonov-Casher-Phase zugeschrieben, wohingegen Effekte aufgrund der Berry-Phase nicht nachgewiesen werden können. Diese Interpretation wird durch theoretische Berechnungen bestätigt, in denen Mehr-Kanal-Transport durch den Ring angenommen wurde. Somit liefern unsere Experimente den ersten direkten Nachweis des AC-Effektes in Halbleiterstrukturen. Insgesamt stellen die HgTe-Quantentröge ein als exzellentes System zur Untersuchung von spin-bezogenen Transportphänomenen dar: Der QSHE beruht auf der besonderen Bandstruktur; und sowohl der SHE als auch der AC-Effekt treten aufgrund der deutlichen Spin-Bahn-Wechselwirkung auf. Für alle Effekte wurden überzeugende Ergebnisse erzielt; allerdings konnten einige Fragen noch nicht vollständig beantwortet werden. Einige können möglicherweise mittels umfangreicherer Untersuchungen geklärt werden. Andere jedoch verlangen z.B. nach Fortschritten in der Probenherstellung oder anderen Untersuchungsmethoden. Daher können zukünftige Experimente weitere neue faszinierende Einblicke sowohl in die hier diskutierten Effekte als auch in andere Spin-Bahn-bezogene Transportphänomene bieten. KW - Spin-Bahn-Wechselwirkung KW - Quantenwell KW - Elektronischer Transport KW - Interferenz KW - Quanten-Hall-Effekt KW - Spin KW - Zwei-Sechs-Halbleiter KW - mesoskopischer Transport KW - Quanten-Spin-Hall-Effekt KW - Spin-Hall-Effekt KW - Aharonov-Casher-Effekt KW - mesoscopic transport KW - spin-orbit-interaction KW - narrow-gap semiconductor KW - quantum spin Hall effect KW - spin Hall effect KW - Aharonov-Casher phase Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-27301 ER - TY - THES A1 - Frey, Alexander T1 - Spin-Dependent Tunneling and Heterovalent Heterointerface Effects in Diluted Magnetic II-VI Semiconductor Heterostructures T1 - Spinabhängiges Tunneln und heterovalente Heterogrenzflächen in verdünnt magnetischen II-VI Halbleiter Heterostrukturen N2 - The contribution of the present thesis consists of three parts. They are centered around investigating certain semiconductor heterointerfaces relevant to spin injection, exploring novel, diluted magnetic single barrier tunneling structures, and further developing diluted magnetic II-VI resonant tunneling diodes. N2 - Der Beitrag der vorliegenden Arbeit besteht aus drei Teilen. Diese beschäftigen sich mit der Untersuchung bestimmter, für Spininjektion relevanter, Halbleiter Heterogrenzflächen, mit neuartigen, verdünnt magnetischen Einzelbarrieren-Tunnelstrukturen, sowie mit der Weiterentwicklung von verdünnt magnetischen Resonanz-Tunneldioden. KW - Zwei-Sechs-Halbleiter KW - Heterostruktur KW - Spintronik KW - II-VI Semiconductors KW - Diluted magnetic semiconductors KW - resonant tunneling KW - spintronics KW - heterovalent heterointerfaces KW - Spin KW - Halbleiter KW - Molekularstrahlepitaxie KW - Resonanz-Tunneleffekt KW - Tunneleffekt KW - Röntgendiffraktometrie KW - Magnetowiderstand Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-78133 ER - TY - THES A1 - Fiederling, Roland T1 - Elektrische Spininjektion in GaAs LEDs T1 - Electrical spin injection into GaAs LEDs N2 - Die Zielsetzung dieser Arbeit war die elektrische Spininjektion in Halbleiter zu erforschen und Methoden zu deren Realisation zu entwickeln. Hierzu wurden in dieser Arbeit III-V und II-VI Halbleiterheterostrukturen mit Hilfe von Photolumineszenz-, Elektrolumineszenz- und Anregungsspektroskopie untersucht. Die Messungen wurden bei Temperaturen im Bereich von 1.6 K bis 50 K durchgeführt und es wurden Magnetfelder bis zu 9 T verwendet. Die elektrische Spininjektion in einen nicht magnetischen Halbleiter wurde zum ersten mal in dieser Arbeit nachgewiesen. Hierzu wurden zwei neuartige Konzepte verwendet und miteinander verbunden. Zum einen wurde die Detektion von spinpolarisierten Strömen mit Hilfe von optischen Übergängen durchgeführt. Zum anderen wurde in dieser Arbeit erstmals ein semimagnetischer II-VI Halbleiter als spinpolarisierender Kontakt verwendet. Durch die optische Detektion wurden die bisherigen Magnetowiderstandsmessungen zur Bestimmung der Spininjektion abgelöst und durch die Verwendung von semimagnetischen Halbleitern wurde eine neue Klasse von Materialien für die Anwendung in spinselektiven Halbleiterheterostrukturen gefunden. Für den optischen Detektor der Elektronenpolarisation wurde eine GaAs/(Al, Ga)As Leuchtdiode (Spin-LED) verwendet, in die über das p-dotierte Substrat unpolarisierte Löcher und über den n-dotierten semimagnetischen Halbleiter spinpolarisierte Elektronen injiziert wurden. Das durch die Rekombination der Ladungsträger aus der LED emittierte Licht wurde in Oberflächenemission detektiert. Aufgrund der Auswahlregeln für optische Übergänge in Halbleitern mit Zinkblendestruktur ist es möglich, anhand der zirkularen Polarisation der Elektrolumineszenz, die Polarisation der injizierten Elektronen anzugeben. Abhängig vom externen Magnetfeld wurde die zirkulare Polarisation der Lichtemission von Spin-LEDs analysiert. Diese Polarisation erreichte schon bei geringen externen Magnetfeldern von z.B. 0.5 T sehr hohe Werte von bis zu 50 %. Im Vergleich dazu ist die intrinsische Polarisation von GaAs/(Al, Ga)As Heterostrukturen mit bis zu 5 % sehr gering. An den Spin-LEDs wurden Photolumineszenzmessungen zu der Bestimmung der intrinsischen Polarisation durchgeführt und zusätzlich wurde die Elektrolumineszenz von GaAs LEDs ohne manganhaltigen Kontakt analysiert. Mit Hilfe dieser Referenzmessungen konnten Seiteneffekte, die z.B. durch die magneto-optisch aktive manganhaltige Schicht in den Spin-LEDs verursacht werden können, ausgeschlossen werden. Insgesamt war es möglich die elektrische Spininjektion in Halbleiter eindeutig nachzuweisen. N2 - The purpose of this thesis was to study the electrical spin injection into semiconductors. To realize this III-V and II-VI semiconductor heterostructures have been studied by photoluminescence-, electroluminescence-, and excitationspectroscopy. All measurements in this thesis have been carried out in the temperature range from 1.6 K to 50 K, and magnetic fields up to 9 T have been used. The electrical spin injection into a non magnetic semiconductor has been demonstrated experimentally for the first time in this thesis. This was possible because two complete new concepts have been used to realize the electrical spin injection. On one hand the polarization of a spin polarized current was detected by optical transitions. And on the other hand a semimagnetic II-VI semiconductor has been used for the first time to generate a spin polarized current. With semimagnetic semiconductors a new class of spin selective materials has been introduced into spintronics and by the optical detection of a spin polarized current former experimental methods e.g. magneto resistivity measurements have become obsolete. A GaAs/(Al, Ga)As light emitting diode (Spin-LED), where unpolarized holes are injected over the p-type substrate and spin polarized electrons are injected over the n-type semimagnetic contact layer, has been used in this thesis to detect spin polarized currents. The light which is emitted from the active area of the LED in surface emission has been analyzed. Due to the selection rules for optical transitions in semiconductors it is possible to determine the polarization of the current driving the LED by the analysis of the circular polarization of the emitted light. The circular polarization of the light emission of Spin-LEDs has been determined for various external magnetic fields. This polarization reached at weak magnetic fields of 0.5 T already quite high values of about 50 %. In comparison, a non magnetic GaAs/(Al, Ga)As LED produces circular polarized light with a polarization of about 5 %, which is a typical value and quite small. The Spin-LEDs have been also analyzed by photoluminescence to determine the intrinsic polarization and additionally the electroluminescence of GaAs LEDs without semimagnetic contact has been analyzed. In conclusion, all these measurements clearly showed, that spin polarized currents can be injected through semimagnetic semiconductors into non magnetic semiconductors. KW - Zwei-Sechs-Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - Halbleiter KW - Spintronik KW - Spin-LED KW - Optische Spektroskopie KW - Semiconductors KW - Spintronics KW - Spin-LED KW - Optical spectroscopy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11338 ER - TY - THES A1 - Baß, Utz T1 - Analysis of MBE-grown II-VI Hetero-Interfaces and Quantum-Dots by Raman Spectroscopy T1 - Analyse von MBE-gewachsenen II-VI Heterogrenzschichten und Quantenpunkten mittels Ramanspektroskopie N2 - The material system of interest in this thesis are II-VI-semiconductors. The first part of this thesis focuses on the formation of self-assembled CdSe-based quantum dots (QD) on ZnSe. The lattice constants of ZnSe and CdSe differ as much as about 7\% and therefore a CdSe layer grown on top of ZnSe experiences a huge strain. The aspired strain relief constitutes in the self-assembly of QDs (i.e. a roughened layer structure). Additionally, this QD layer is intermixed with Zn as this is also a possibility to decrease the strain in the layer. For CdSe on ZnSe, in Molecular Beam Epitaxy (MBE), various QD growth procedures were analysed with respect to the resulting Cd-content of the non-stoichiometric ternary (Zn,Cd)Se. The evaluation was performed by Raman Spectroscopy as the phonon frequency depends on the Cd-content. The second part of the thesis emphasis on the interface properties of n-ZnSe on n-GaAs. Different growth start procedures of the ZnSe epilayer may lead to different interface configurations with characteristic band-offsets and carrier depletion layer widths. The analysis is mainly focused on the individual depletion layer widths in the GaAs and ZnSe. This non-destructive analysis is performed by evaluating the Raman signal which comprises of phonon scattering from the depleted regions and coupled plasmon-phonon scattering from regions with free carriers. N2 - Im Rahmen dieser Dissertation wurden II-VI Halbleiter untersucht. Der erste Teil behandelt die Selbstorganisation von CdSe basierten Quantenpunkten auf ZnSe. Die Gitterkonstante von ZnSe und CdSe differieren um ca. 7% und daher erfährt eine CdSe Schicht auf ZnSe eine riesige Verspannung. Der angestrebte Abbau dieser Verspannung resultiert in der Selbstorganisation von Quantenpunkten (bzw. einer rauen CdSe-Oberfläche). Zusätzlich bietet die Durchmischung mit Zn eine weitere Möglichkeit die Verspannung zu senken. In der Arbeit wurde mittels Raman Spektroskopie der Einfluss von verschiedenen MBE-Wachstumsmethoden auf den resultierenden Cd-Gehalt der Quantenpunktschicht untersucht. Im zweiten Teil standen die Grenzflächeneigenschaften von n-ZnSe auf n-GaAs im Fokus. Unterschiedliche Wachstumsmethoden dieser Grenzflächen können sich auf verschiedene Eigenschaften auswirken. Insbesondere in der Ausbildung von Verarmungszonen innerhalb der beiden Materialien an der Grenzfläche. Hierzu kam auch Raman Spektroskopie zum Einsatz da sich das Raman Signal aus Streubeiträgen von Phononen aus den verarmten Zonen und aus gekoppelten Plasmon-Phonon Moden aus den Schichten mit freien Ladungsträgern zusammensetzt. KW - Zwei-Sechs-Halbleiter KW - Molekularstrahlepitaxie KW - self-assembly KW - quantum-dots KW - Raman KW - plasmon KW - phonon KW - Wide-gap-Halbleiter KW - n-Halbleiter Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73413 ER -