TY - THES A1 - Väth, Stefan Kilian T1 - On the Role of Spin States in Organic Semiconductor Devices T1 - Die Rolle von Spin Zuständen in organischen Halbleiterbauteilen N2 - The present work addressed the influence of spins on fundamental processes in organic semiconductors. In most cases, the role of spins in the conversion of sun light into electricity was of particular interest. However, also the reversed process, an electric current creating luminescence, was investigated by means of spin sensitive measurements. In this work, many material systems were probed with a variety of innovative detection techniques based on electron paramagnetic resonance spectroscopy. More precisely, the observable could be customized which resulted in the experimental techniques photoluminescence detected magnetic resonance (PLDMR), electrically detected magnetic resonance (EDMR), and electroluminescence detected magnetic resonance (ELDMR). Besides the commonly used continuous wave EPR spectroscopy, this selection of measurement methods yielded an access to almost all intermediate steps occurring in organic semiconductors during the conversion of light into electricity and vice versa. Special attention was paid to the fact that all results were applicable to realistic working conditions of the investigated devices, i.e. room temperature application and realistic illumination conditions. N2 - Die vorliegende Arbeit behandelt den Einfluss der Elektronenspins auf grundlegende Prozesse in organischen Halbleitern. In den meisten Fällen wurde der Spineinfluss während der Umwandlung von Sonnenlicht in Elektrizität untersucht. Zusätzlich wurde in einer Studie der gegenteilige Prozess behandelt. Dabei wurde der Einfluss der Spins auf die Umwandlung von elektrischem Strom in Licht betrachtet. Es wurden viele verschiedene Materialsysteme verwendet, die mit einer Vielzahl an Methoden vermessen wurden, welche alle auf dem Prinzip der Elektronenspinresonanz beruhen. Dabei wurde stets die Messgröße variiert, was zu den verwendeten Messmethoden Photolumineszenz detektierte Magnetresonanz (PLDMR), elektrisch detektierte Magnetresonanz (EDMR) und Elektrolumineszenz detektierte Magnetresonanz (ELDMR) geführt hat. Zusam- men mit der gewöhnlichen Elektronenspinresonanz Spektroskopie führt diese Auswahl an vielfältigen Messmethoden dazu, dass so gut wie alle Zwischenschritte bei der Umwand- lung von Licht in Elektrizität als auch von Elektrizität in Licht untersucht werden können. Besonderes Augenmerk wurde darauf gelegt, dass alle Messungen auf realistische Bedingungen übertragbar sind, d.h. bei Raumtemperatur und unter normalen Beleuchtungsstärken und -wellenlängen. Zu Beginn der Arbeit wurde ein kurzer Überblick über die historische Entwicklung von organischen Solarzellen gegeben, zusammen mit der Erläuterung von grundlegenden Prozessen in den untersuchten Bauteilen, stets auch hinsichtlich der vorkommenden Spinzustände. Desweiteren wurde die Solarzellencharakterisierung und die Morphologie der aktiven Schicht diskutiert. Das darauf folgende Kapitel behandelte die theoretische Beschreibung des Magnetfeldeffekts auf Spinzustände und diverse Wechselwirkungsmechanismen. Darüber hinaus wurde diskutiert, wie Mikrowellen die vom Magnetfeld ausgerichteten Spins beeinflussen können. Zu guter Letzt wurden verschiedene Modelle vorgestellt, mit deren Hilfe sich die erzielten Ergebnisse interpretieren lassen. Das nächste Kapitel beschreibt schließlich detailliert die experimentellen Feinheiten, wie verwendete Materialien, Probenherstellung und verschiedene Spektrometer Konfigurationen. Das erste Ergebnis Kapitel beschreibt den Einfluss des Zusatzmittels 1,8-Dijodoktan auf das Materialsystem PTB7:PC70BM. Dies wurde mit Hilfe von konventioneller Elek- tronenspinresonanz untersucht, welche es ermöglicht zwischen Elektronen auf dem Akzeptor- und Polaronen auf dem Donormaterial zu unterscheiden. Ergänzend dazu wurden Röntgenphotoelektronenspektroskopiemessungen durchgeführt, welche zu dem Ergebnis führten, dass Jod trotz Hochvakuumtrocknung mit der relativen hohen Konzentration von (7.3±2.1)·1019 1 in dem Material verbleibt. Zudem bleibt Jod wahrscheinlich bevorzugt in der Akzeptorphase. Es wurde außerdem kein elektronischer Doping- effekt gefunden. Nichtsdestotrotz wird dieses Ergebnis einen Einfluss auf die zukünftige Wahl des Zusatzmittels haben. Kapitel 6 handelt von der Entstehung von Triplett Exzitonen in dem Materialsystem p-DTS(FBTTh2)2:PC70BM, wobei das Donormaterial aus löslichen kleinen Molekülen besteht, anstatt aus Polymeren. Mit Hilfe von PLDMR Messungen konnten die Entstehungsmechanismen Elektronenrücktransfer, sowie inter system crossing den verschiedenen Proben zugeordnet werden. Der genaue Mechanismus hängt jedoch stark von der Morphologie des untersuchten Materialsystems ab. Durch den Nachweis von Triplett Exzitonen bei Raumtemperatur konnte die Relevanz der Ergebnisse auch bei realen Bedingungen bestätigt werden. Vergleicht man das Triplett Vorkommen mit den So- larzelleneffizienzen konnte keine Korrelation erkannt werden. Daraus ergibt sich, dass Triplett Exzitonen für das untersuchte Materialsystem keine Effizienz limitierende Größe darstellen. Zum Abschluss wurde die Ausrichtung der Moleküle auf dem Substrat mit Hilfe von winkelabhängigen Messungen bestätigt. Der Einfluss des Zusatzmittels Galvinoxyl auf die Funktionsweise von organischen Solarzellen wird in Kapitel 7 untersucht. Es wurden PLDMR durchgeführt, die gezeigt haben, dass Galvinoxyl in der Lage ist Spin Zustände zu verändern, wie von der Literatur vorhergesagt. Aufgrund dessen handelt es sich um einen konkurrierenden Prozess gegenüber den erzeugten Spin resonanten Bedingungen. Durch die Messung an verschiedenen Doping Konzentrationen konnte ein Optimum von 3.2 % für das Materialsystem P3HT:PC60BM bestimmt werden. Trotzallem ist es unwahrscheinlich, dass der sehr große Anstieg des Photostroms in mit Galvinoxyl gedopten Solarzellen auf spinabhängige Prozesse zurückzuführen ist. Die Quantifizierung von spinabhängigen Prozessen in organischen Solarzellen bein- haltet viele Schwierigkeiten. Durch die Kombination des EDMR Messprinzips mit der Ladungsträgerextraktionsmethode OTRACE war es jedoch möglich, einen spinabhängigen Rekombinationsanteil von (0.012±0.009)% bei Raumtemperatur und (0.052±0.031)% bei 200 K für das Materialsystem P3HT:PC70BM zu bestimmen. Darüber hinaus wurde eine Interpretation eingeführt, die in der Lage ist, das Zustandekommen des EDMR Signals zu erklären. Im letzten Ergebnisteil (Kapitel 9) wurde der Fokus darauf gelegt, wie Spins die Funktionsweise von organischen Leuchtdioden (OLEDs) beeinflussen, die auf thermisch aktivierter verzögerter Lumineszenz (TADF) basieren. Dabei wurden verschiedene Detektionsverfahren verwendet, wobei sich heraus gestellt hat, dass ELDMR das einzig verwendbare darstellt. Damit konnten durch temperaturabhängige Messungen der energetische Unterschied zwischen dem Singulett- und Triplett Exciplex Zustand ∆EST bestimmt werden. Es ergaben sich (20.5±1.2) meV für THCA:BPhen und (68.3±5.4) meV für m-MTDATA:BPhen. Durch diese Messungen wurde zum ersten Mal zweifelsfrei der Einfluss von Spins in der Entstehung der Elektrolumineszenz von TADF OLEDs gezeigt. Aufgrund der Diskussion von möglichen Gründen, die für die verschiedenen Werte von ∆EST verantwortlich sind, konnten neue Vorgaben für zukünftige Materialkombinationen und -synthese gefunden werden. Zusammenfassend lässt sich sagen, dass die vorliegende Arbeit einen bedeutenden Beitrag geliefert hat, um spinabhängige Prozesse in organischen Halbleitern aufzuklären. Darauf aufbauend werden Folgestudien vielleicht eines Tages sämtliche spinabhängigen Prozesse in diesen viel versprechenden Materialsystemen erklären können. KW - Organischer Halbleiter KW - Elektronenspin KW - Polymerhalbleiter KW - Organic Semiconductors KW - Electron Spin Resonance KW - Elektronenspinresonanz KW - Spin KW - Spin-eins-System Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-141894 ER - TY - THES A1 - Schmitt, Matthias T1 - High Energy Spin- and Momentum-Resolved Photoelectron Spectroscopy of Complex Oxides T1 - Hochenergetische spin- und impulsaufgelöste Photoelektronenspektroskopie an komplexen Oxiden N2 - Spin- and \(k\)-resolved hard X-ray photoelectron spectroscopy (HAXPES) is a powerful tool to probe bulk electronic properties of complex metal oxides. Due to the low efficiency of common spin detectors of about \(10^{-4}\), such experiments have been rarely performed within the hard X-ray regime since the notoriously low photoionization cross sections further lower the performance tremendously. This thesis is about a new type of spin detector, which employs an imaging spin-filter with multichannel electron recording. This increases the efficiency by a factor of \(10^4\) and makes spin- and \(k\)-resolved photoemission at high excitation energies possible. Two different technical approaches were pursued in this thesis: One using a hemispherical deflection analyzer (HDA) and a separate external spin detector chamber, the other one resorting to a momentum- or \(k\)-space microscope with time-of-flight (TOF) energy recording and an integrated spin-filter crystal. The latter exhibits significantly higher count rates and - since it was designed for this purpose from scratch - the integrated spin-filter option found out to be more viable than the subsequent upgrade of an existing setup with an HDA. This instrumental development is followed by the investigation of the complex metal oxides (CMOs) KTaO\(_3\) by angle-resolved HAXPES (HARPES) and Fe\(_3\)O\(_4\) by spin-resolved HAXPES (spin-HAXPES), respectively. KTaO\(_3\) (KTO) is a band insulator with a valence-electron configuration of Ta 5\(d^0\). By angle- and spin-integrated HAXPES it is shown that at the buried interface of LaAlO\(_3\)/KTO - by the generation of oxygen vacancies and hence effective electron doping - a conducting electron system forms in KTO. Further investigations using the momentum-resolution of the \(k\)-space TOF microscope show that these states are confined to the surface in KTO and intensity is only obtained from the center or the Gamma-point of each Brillouin zone (BZ). These BZs are furthermore square-like arranged reflecting the three-dimensional cubic crystal structure of KTO. However, from a comparison to calculations it is found that the band structure deviates from that of electron-doped bulk KTaO\(_3\) due to the confinement to the interface. There is broad consensus that Fe\(_3\)O\(_4\) is a promising material for spintronics applications due to its high degree of spin polarization at the Fermi level. However, previous attempts to measure the spin polarization by spin-resolved photoemission spectroscopy have been hampered by the use of low photon energies resulting in high surface sensitivity. The surfaces of magnetite, though, tend to reconstruct due to their polar nature, and thus their magnetic and electronic properties may strongly deviate from each other and from the bulk, dependent on their orientation and specific preparation. In this work, the intrinsic bulk spin polarization of magnetite at the Fermi level (\(E_F\)) by spin-resolved photoelectron spectroscopy, is determined by spin-HAXPES on (111)-oriented thin films, epitaxially grown on ZnO(0001) to be \(P(E_F) = -80^{+10}_{-20}\) %. N2 - Spin- und \(k\)-aufgelöste harte Röntgenphotoelektronenspektroskopie (HAXPES) ist ein leistungsähiges Werkzeug zur Untersuchung der elektronischen Eigenschaften komplexer Metalloxide. Aufgrund der geringen Effizienz gängiger Spin-Detektoren von etwa \(10^{-4}\) wurden solche Experimente im Bereich der harten Röntgenstrahlung nur selten durchgeführt, da die notorisch niedrigen Photoionisationsquerschnitte die Leistungsfähigkeit noch weiter verringern. In dieser Arbeit geht es um einen neuartigen Spin-Detektor, der einen abbildenden Spin-Filter mit Mehrkanal-Elektronenaufzeichnung verwendet. Dies erhöht die Effizienz um einen Faktor \(10^4\) und ermöglicht spin- und \(k\)-aufgelöste Photoemission bei hohen Anregungsenergien. Zwei verschiedene technische Ansätze werden in der vorliegenden Arbeit verfolgt: Zum einen mit einem Halbkugelanalysator (HDA) und einer separaten externen Spin-Detektorkammer, zum anderen mit einem Impuls- oder Impuls-Mikroskop mit Flugzeit-Energieaufzeichnung (TOF) und einem integrierten Spin-Filterkristall. Letzteres weist deutlich höhere Zählraten auf, und - da es von Grund auf für diesen Zweck entwickelt wurde - erwies sich die integrierte Spinfilteroption als praktikabler als die nachträgliche Aufrüstung des bestehenden Aufbaus mit einem HDA. Auf diese instrumentelle Entwicklung folgt die Untersuchung der komplexen Metalloxide (CMOs) KTaO\(_3\) durch winkelaufgelöstes HAXPES (HARPES) und Fe\(_3\)O\(_4\) durch spinaufgelöstes HAXPES (spin-HAXPES). KTaO\(_3\) (KTO) ist ein Bandisolator mit einer Valenz-Elektronenkonfiguration von Ta 5\(d^0\). Durch winkel- und spin-integriertes HAXPES wird gezeigt, dass sich an der vergrabenen Grenzfläche von dLaAlO\(_3\)/KTO - durch die Erzeugung von Sauerstoff-Fehlstellen und damit effektiver Elektronendotierung - ein leitendes Elektronensystem in KTO bildet. Weitere Untersuchungen mit der Impulsauflösung des TOF-Mikroskops im \(k\)-Raum zeigen, dass diese Zustände auf die Oberfläche in KTO beschränkt sind und die Intensität nur vom Zentrum oder dem Gamma-Punkt jeder Brillouin-Zone (BZ) gemessen wird. Diese BZn sind darüber hinaus quadratisch angeordnet, was die dreidimensionale kubische Kristallstruktur von KTO widerspiegelt. Aus einem Vergleich mit Bandrechnungen geht jedoch hervor, dass die Bandstruktur aufgrund des Einschlusses an der Grenzfläche von der des elektronen-dotierten KTO-Volumens abweicht. Es besteht ein breiter Konsens darüber, dass Fe\(_3\)O\(_4\) aufgrund seines hohen Grades an Spinpolarisation am Fermi-Niveau ein vielversprechendes Material für Spintronik-Anwendungen ist. Bisherige Versuche, die Spinpolarisation durch spinaufgelöste Photoemissionsspektroskopie zu messen, wurden jedoch durch die Verwendung von niedrigen Photonenenergien behindert, was zu einer hohen Oberflächenempfindlichkeit führt. Die Oberflächen von Magnetit neigen jedoch aufgrund ihres polaren Charakters zu Rekonstruktionen, so dass ihre magnetischen und elektronischen Eigenschaften stark voneinander und vom Volumen abweichen können, abhängig von ihrer Oberflächenorientierung und ihrer spezifischen Präparation. In dieser Arbeit wird die intrinsische Bulk-Spinpolarisation von Magnetit am Fermi-Niveau (\(E_F\)) durch spinaufgelöste Photoelektronenspektroskopie an (111)-orientierten dünnen Filmen, die epitaktisch auf ZnO(0001) gewachsen sind, zu \(P(E_F) = -80^{+10}_{-20}\) % bestimmt. KW - Elektronenkorrelation KW - Elektronenspin KW - Röntgen-Photoelektronenspektroskopie KW - Spinell KW - Perowskit KW - Winkel- und spin-aufgelöste Photoelektronenspektroskopie im harten Röntgenbereich KW - Momentum- and spin-resolved hard X-ray photoelectron spectroscopy KW - Elektronenspin KW - Electron spin KW - Time-of-flight energy recording KW - Imaging spin-filter Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-264757 ER - TY - THES A1 - Henn, Tobias T1 - Hot spin carriers in cold semiconductors : Time and spatially resolved magneto-optical Kerr effect spectroscopy of optically induced electron spin dynamics in semiconductor heterostructures T1 - Heiße Spinträger in kalten Halbleitern N2 - The present thesis “Hot spin carriers in cold semiconductors” investigates hot carrier effects in low-temperature photoinduced magneto-optical Kerr effect (MOKE) microscopy of electron spins in semiconductor heterostructures. Our studies reveal that the influence of hot photocarriers in magneto-optical pump-probe experiments is twofold. First, it is commonly assumed that a measurement of the local Kerr rotation using an arbitrary probe wavelength maps the local electron spin polarization. This is the fundamental assumption that underlies the widely used two-color MOKE microscopy technique. Our continuous-wave (cw) spectroscopy experiments demonstrate that this assumption is not correct. At low lattice temperatures the nonresonant spin excitation by the focused pump laser inevitably leads to a strong heating of the electron system. This heating, in turn, locally modifies the magneto-optical coefficient which links the experimentally observed Kerr rotation to the electron spin polarization. As a consequence, the spin-induced local Kerr rotation is augmented by spin-unrelated changes in the magneto-optical coefficient. A spatially resolved measurement of the Kerr rotation then does not correctly map the electron spin polarization profile. We demonstrate different ways to overcome this limitation and to correctly measure the electron spin profile. For cw spectroscopy we show how the true local electron spin polarization can be obtained from a quantitative analysis of the full excitonic Kerr rotation spectrum. Alternatively, picosecond MOKE microscopy using a spectrally broad probe laser pulse mitigates hot-carrier effects on the magneto-optical spin detection and allows to directly observe the time-resolved expansion of optically excited electron spin packets in real-space. Second, we show that hot photocarriers strongly modify the spin diffusion process. Owing to their high kinetic energy, hot carriers greatly enhance the electron spin diffusion coefficient with respect to the intrinsic value of the undisturbed system. Therefore, for steady-state excitation the spin diffusivity is strongly enhanced close to the pump spot center where hot electrons are present. Similarly, for short delays following pulsed excitation the high initial temperature of the electrons leads to a very fast initial expansion of the spin packet which gradually slows as the electrons cool down to the lattice temperature. While few previous publications have recognized the possible influence of hot carriers on the electron spin transport properties, the present work is the first to directly observe and quantify such hot carrier contributions. We develop models which for steady-state and pulsed excitation quantitatively describe the experimentally observed electron spin diffusion. These models are capable of separating the intrinsic spin diffusivity from the hot electron contribution, and allow to obtain spin transport parameters of the undisturbed system. We perform extensive cw and time-resolved spectroscopy studies of the lattice temperature dependence of the electron spin diffusion in bulk GaAs. Using our models we obtain a consistent set of parameters for the intrinsic temperature dependence of the electron spin diffusion coefficient and spin relaxation time and the hot carrier contributions which quantitatively describes all experimental observations. Our analysis unequivocally demonstrates that we have, as we believe for the first time, arrived at a coherent understanding of photoinduced low-temperature electron spin diffusion in bulk semiconductors. N2 - Die vorliegende Arbeit untersucht den Einfluss heißer Ladungsträger in pump-probe magneto-optischer Kerr-Effekt (MOKE) Tieftemperatur-Mikroskopie-Messungen der optisch induzierten Elektronenspin-Dynamik in Galliumarsenid-basierten Halbleiterheterostrukturen. Die Arbeit zeigt, dass dieser Einfluss von zweierlei Art ist. Der erste Aspekt betrifft die magneto-optische Elektronenspin-Detektion. Es wird gewöhnlich angenommen, dass eine Messung der lokalen Kerr-Rotation unter Verwendung einer beliebigen Probelaser-Wellenlänge korrekt die lokale Elektronenspinpolarisation abbildet. Diese Prämisse ist die fundamentale Grundlage der MOKE Elektronenspin-Mikroskopie. Unsere Dauerstrich-Spektroskopie-Ergebnisse belegen, dass diese Annahme im Allgemeinen nicht korrekt ist. Bei tiefen Gittertemperaturen führt die nichtresonante optische Anregung spinpolarisierter Elektronen zu einer signifikanten Heizung des Elektronensystems. Diese Heizung modifiziert lokal den magneto-optischen Koeffizienten, der die im Experiment beobachtete Kerr-Rotation mit der zu messenden Elektronenspinpolarisation verknüpft. Als Konsequenz ist die spininduzierte lokale Kerr-Rotation von spinunabhängigen Änderungen des der magneto-optischen Koeffizienten überlagert. Eine ortsaufgelöste Messung der Kerr-Rotation bildet dann im Allgemeinen nicht korrekt die lokale Elektronenspinpolarisation ab. Wir demonstrieren verschiedene Möglichkeiten, diese Einschränkung zu überwinden und das korrekte Elektronenspin-Profil zu bestimmen. Für Dauerstrich-Anregung zeigen wir, dass das Elektronenspin-Profil korrekt durch eine quantitative Analyse des lokalen exzitonischen Kerr-Rotations-Spektrums ermittelt werden kann. Alternativ minimiert Pikosekunden-zeitaufgelöste MOKE Mikroskopie unter Verwendung eines spektral breiten gepulsten Probelasers den Einfluss heißer Elektronen auf die magneto-optische Spin-Detektion und erlaubt die direkte Beobachtung der diffusiven Ausbreitung optisch erzeugter Elektronenspin-Pakete im Realraum. Als zweites Hauptergebnis zeigen wir, dass optische angeregte heiße Ladungsträger signifikant die Spindiffusion beeinflussen. Durch ihre hohe kinetischen Energie erhöhen heiße Photoladungsträger stark den Elektronenspin-Diffusionskoeffizienten im Vergleich zum intrinsischen Wert des ungestörten Systems. Aus diesem Grund ist bei tiefen Gittertemperaturen für lokale Dauerstrich-Anregung der Spin-Diffusionskoeffizient in der Nähe des fokussierten Pumplaserstrahls, in der heiße Elektronen vorhanden sind, stark erhöht. Analog führt für kurze Zeiten nach gepulster optischer Anregung die hohe anfängliche Elektronentemperatur zu einer sehr schnellen initialen Ausbreitung des Spin-Paktes, welche sich allmählich verlangsamt, während die Elektronen auf die Gittertemperatur abkühlen. Während einzelne frühere Arbeiten bereits den möglichen Einfluss heißer Ladungsträger auf den Elektronenspin-Transport erkannten, ist die vorliegende Arbeit die erste, die die Wirkung heißer Träger auf die Elektronenspin-Diffusion direkt beobachtet und quantifiziert. Wir entwickeln verschiedene Modelle, die für gepulste und Dauerstrich-Anregung quantitativ die Elektronenspin-Diffusion beschreiben. Diese Modelle sind in der Lage, die intrinsische Spindiffusivität von den Beiträgen heißer Ladungsträger zu trennen und erlauben, die Spintransport-Eigenschaften des ungestörten Systems zu bestimmen. Wir untersuchen in zeitaufgelösten und Dauerstrich-Anregungs-Experimenten die Gittertemperatur-Abhängigkeit der Spindiffusion in n-dotiertem Volumen-GaAs. Mit Hilfe unserer Modelle ermitteln wir einen konsistenten Parameter-Satz für die intrinsische Temperaturabhängigkeit der Spinrelaxationszeit und des Elektronenspin-Diffusionskoeffizienten sowie der Beiträge heißer Ladungsträger, der quantitativ alle experimentellen Beobachtungen beschreibt. Damit haben wir erstmals ein kohärentes Verständnis der optisch induzierten Tieftemperatur-Elektronenspin-Diffusion in Halbleitern entwickelt. KW - Galliumarsenid KW - Optische Spektroskopie KW - Heterostruktur KW - spintronics KW - Spintronik KW - Elektronenspin KW - Halbleiterphysik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110265 ER - TY - THES A1 - Fuchs, Moritz Jakob T1 - Spin dynamics in the central spin model: Application to graphene quantum dots T1 - Spin-Dynamik im zentralen Spin-Modell: Anwendung auf Graphen-Quantenpunkte N2 - Due to their potential application for quantum computation, quantum dots have attracted a lot of interest in recent years. In these devices single electrons can be captured, whose spin can be used to define a quantum bit (qubit). However, the information stored in these quantum bits is fragile due to the interaction of the electron spin with its environment. While many of the resulting problems have already been solved, even on the experimental side, the hyperfine interaction between the nuclear spins of the host material and the electron spin in their center remains as one of the major obstacles. As a consequence, the reduction of the number of nuclear spins is a promising way to minimize this effect. However, most quantum dots have a fixed number of nuclear spins due to the presence of group III and V elements of the periodic table in the host material. In contrast, group IV elements such as carbon allow for a variable size of the nuclear spin environment through isotopic purification. Motivated by this possibility, we theoretically investigate the physics of the central spin model in carbon based quantum dots. In particular, we focus on the consequences of a variable number of nuclear spins on the decoherence of the electron spin in graphene quantum dots. Since our models are, in many aspects, based upon actual experimental setups, we provide an overview of the most important achievements of spin qubits in quantum dots in the first part of this Thesis. To this end, we discuss the spin interactions in semiconductors on a rather general ground. Subsequently, we elaborate on their effect in GaAs and graphene, which can be considered as prototype materials. Moreover, we also explain how the central spin model can be described in terms of open and closed quantum systems and which theoretical tools are suited to analyze such models. Based on these prerequisites, we then investigate the physics of the electron spin using analytical and numerical methods. We find an intriguing thermal flip of the electron spin using standard statistical physics. Subsequently, we analyze the dynamics of the electron spin under influence of a variable number of nuclear spins. The limit of a large nuclear spin environment is investigated using the Nakajima-Zwanzig quantum master equation, which reveals a decoherence of the electron spin with a power-law decay on short timescales. Interestingly, we find a dependence of the details of this decay on the orientation of an external magnetic field with respect to the graphene plane. By restricting to a small number of nuclear spins, we are able to analyze the dynamics of the electron spin by exact diagonalization, which provides us with more insight into the microscopic details of the decoherence. In particular, we find a fast initial decay of the electron spin, which asymptotically reaches a regime governed by small fluctuations around a finite long-time average value. Finally, we analytically predict upper bounds on the size of these fluctuations in the framework of quantum thermodynamics. N2 - Auf Grund ihres Potentials hinsichtlich der Realisierung eines Quantencomputers wurde Quantenpunkten im Laufe der letzten Jahre große Aufmerksamkeit zuteil. In diesen Halbleiterstrukturen können einzelne Elektronen kontrolliert eingeschlossen werden, deren Spin wiederum als Basis eines Quantenbits zu Speicherung von Informationen verwendet werden kann. Allerdings unterliegt das Elektron vielvältigen Wechselwirkungen mit seiner Umgebung, was oftmals zu einem sehr schnellen Verlust dieser Information führt. Eine der wichtigsten Ursachen stellt dabei die Hyperfeinwechselwirkung der Kernspins der Halbleiteratome mit dem Elektronspin dar. Eine vielversprechende Möglichkeit diesen Effekt zu minimieren besteht daher in der Verringerung der Anzahl an Kernspins durch Anreicherung spinfreier Isotope. Diese Strategie kann auf Bauteile, bestehend aus Elementen der IV. Gruppe des Periodensystems wie beispielsweise Kohlenstoff, angewendet werden. Ausgehend von dieser Möglichkeit, wird in der vorliegenden Arbeit das Verhalten des Elektronspins in (kohlenstoffbasierten) Graphenquantenpunkten im Rahmen des zentralen Spinmodells analysiert. Besonderes Augenmerk wird dabei auf die Abhängigkeit der Dekohärenzphänomene von der Kernspinzahl gelegt. Da sich die Modelle, auf denen diese Untersuchung basiert, an experimentellen Gegebenheiten orientieren, wird zunächst ein überblick über die wichtigsten experimentellen Errungenschaften präsentiert. Neben einer allgemeinen Behandlung der Spinwechselwirkungen in Halbleitern wird dabei auch speziell auf die Eigenschaften von GaAs- und Graphenquantenpunkten eingegangen, die beide als Musterbeispiele angesehen werden können. Des Weiteren wird erläutert, wie sich das zentrale Spinmodell als offenes bzw. geschlossenes Quantensystem beschreiben lässt und mit welchen theoretischen Methoden sich diese untersuchen lassen. Aufbauend auf diesen Erkenntnissen, wird dann das Verhalten des Elektronspins mit Hilfe analytischer und numerischer Methoden erforscht. Im Rahmen der statistischen Physik findet sich ein thermisch induzierter Wechsel der Spinorientierung. überdies wird die Zeitentwicklung des Elektronspins für unterschiedliche Kernspinzahlen analysiert. Der Limes großer Kernspinzahlen wird mit Hilfe der Nakajima-Zwanzig Mastergleichung untersucht, wobei sich für den zeitlichen Verlauf der Dekohärenz des Elektronspins ein Potenzgesetz findet. Die Details dieses Potenzgesetzes hängen dabei von der Orientierung eines äußeren Magnetfeldes ab. Eine Beschränkung auf sehr kleine Spinsysteme ermöglicht die Anwendung von exakter Diagonalisierung, welche zusätzliche Erkenntnisse über die mikroskopischen Vorgänge, die zu Dekohärenz führen, liefert. Insbesondere ist ein schneller übergang zu einem quasi-statischen Verhalten beobachtbar, das durch kleine Fluktuationen um einen Langzeitmittelwert gekennzeichnet ist. Für diese Fluktuationen konnten im Rahmen der Quantenthermodynamik zusätzlich analytische Obergrenzen gefunden werden. KW - Elektronenspin KW - Quantenpunkt KW - Graphen KW - Quantum dot KW - Spin KW - Central spin KW - Graphene KW - Solid state physics KW - Festkörperphysik Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-136079 ER -