TY - JOUR A1 - Steijven, Karin A1 - Spaethe, Johannes A1 - Steffan-Dewenter, Ingolf A1 - Härtel, Stephan T1 - Learning performance and brain structure of artificially-reared honey bees fed with different quantities of food JF - PeerJ N2 - Background Artificial rearing of honey bee larvae is an established method which enables to fully standardize the rearing environment and to manipulate the supplied diet to the brood. However, there are no studies which compare learning performance or neuroanatomic differences of artificially-reared (in-lab) bees in comparison with their in-hive reared counterparts. Methods Here we tested how different quantities of food during larval development affect body size, brain morphology and learning ability of adult honey bees. We used in-lab rearing to be able to manipulate the total quantity of food consumed during larval development. After hatching, a subset of the bees was taken for which we made 3D reconstructions of the brains using confocal laser-scanning microscopy. Learning ability and memory formation of the remaining bees was tested in a differential olfactory conditioning experiment. Finally, we evaluated how bees reared with different quantities of artificial diet compared to in-hive reared bees. Results Thorax and head size of in-lab reared honey bees, when fed the standard diet of 160 µl or less, were slightly smaller than hive bees. The brain structure analyses showed that artificially reared bees had smaller mushroom body (MB) lateral calyces than their in-hive counterparts, independently of the quantity of food they received. However, they showed the same total brain size and the same associative learning ability as in-hive reared bees. In terms of mid-term memory, but not early long-term memory, they performed even better than the in-hive control. Discussion We have demonstrated that bees that are reared artificially (according to the Aupinel protocol) and kept in lab-conditions perform the same or even better than their in-hive sisters in an olfactory conditioning experiment even though their lateral calyces were consistently smaller at emergence. The applied combination of experimental manipulation during the larval phase plus subsequent behavioral and neuro-anatomic analyses is a powerful tool for basic and applied honey bee research. KW - nutrition KW - cognition KW - neuroanatomy KW - differential olfactory conditioning KW - mushroom bodies KW - proboscis extension reflex KW - confocal laser scanning microscopy KW - Apis mellifera KW - brain development KW - morphometry Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170137 VL - 5 IS - e3858 ER - TY - JOUR A1 - Schmitt, Jessica A1 - Eckardt, Sigrid A1 - Schlegel, Paul G A1 - Sirén, Anna-Leena A1 - Bruttel, Valentin S A1 - McLaughlin, K John A1 - Wischhusen, Jörg A1 - Müller, Albrecht M T1 - Human parthenogenetic embryonic stem cell-derived neural stem cells express HLA-G and show unique resistance to NK cell-mediated killing JF - Molecular Medicine N2 - Parent-of-origin imprints have been implicated in the regulation of neural differentiation and brain development. Previously we have shown that, despite the lack of a paternal genome, human parthenogenetic (PG) embryonic stem cells (hESCs) can form proliferating neural stem cells (NSCs) that are capable of differentiation into physiologically functional neurons while maintaining allele-specific expression of imprinted genes. Since biparental ("normal") hESC-derived NSCs (N NSCs) are targeted by immune cells, we characterized the immunogenicity of PG NSCs. Flow cytometry and immunocytochemistry revealed that both N NSCs and PG NSCs exhibited surface expression of human leukocyte antigen (HLA) class I but not HLA-DR molecules. Functional analyses using an in vitro mixed lymphocyte reaction assay resulted in less proliferation of peripheral blood mononuclear cells (PBMC) with PG compared with N NSCs. In addition, natural killer (NK) cells cytolyzed PG less than N NSCs. At a molecular level, expression analyses of immune regulatory factors revealed higher HLA-G levels in PG compared with N NSCs. In line with this finding, MIR152, which represses HLA-G expression, is less transcribed in PG compared with N cells. Blockage of HLA-G receptors ILT2 and KIR2DL4 on natural killer cell leukemia (NKL) cells increased cytolysis of PG NSCs. Together this indicates that PG NSCs have unique immunological properties due to elevated HLA-G expression. KW - brain development KW - immune response KW - T lymphocytes KW - blastocysts KW - lines KW - HLA-G gene KW - mhc molecules KW - nervous system KW - in vitro KW - stem/progenitor cells Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149170 VL - 21 IS - 2101185 ER - TY - JOUR A1 - Lüffe, Teresa M. A1 - Bauer, Moritz A1 - Gioga, Zoi A1 - Özbay, Duru A1 - Romanos, Marcel A1 - Lillesaar, Christina A1 - Drepper, Carsten T1 - Loss-of-Function Models of the Metabotropic Glutamate Receptor Genes Grm8a and Grm8b Display Distinct Behavioral Phenotypes in Zebrafish Larvae (Danio rerio) JF - Frontiers in Molecular Neuroscience N2 - Members of the family of metabotropic glutamate receptors are involved in the pathomechanism of several disorders of the nervous system. Besides the well-investigated function of dysfunctional glutamate receptor signaling in neurodegenerative diseases, neurodevelopmental disorders (NDD), like autism spectrum disorders (ASD) and attention-deficit and hyperactivity disorder (ADHD) might also be partly caused by disturbed glutamate signaling during development. However, the underlying mechanism of the type III metabotropic glutamate receptor 8 (mGluR8 or GRM8) involvement in neurodevelopment and disease mechanism is largely unknown. Here we show that the expression pattern of the two orthologs of human GRM8, grm8a and grm8b, have evolved partially distinct expression patterns in the brain of zebrafish (Danio rerio), especially at adult stages, suggesting sub-functionalization of these two genes during evolution. Using double in situ hybridization staining in the developing brain we demonstrate that grm8a is expressed in a subset of gad1a-positive cells, pointing towards glutamatergic modulation of GABAergic signaling. Building on this result we generated loss-of-function models of both genes using CRISPR/Cas9. Both mutant lines are viable and display no obvious gross morphological phenotypes making them suitable for further analysis. Initial behavioral characterization revealed distinct phenotypes in larvae. Whereas grm8a mutant animals display reduced swimming velocity, grm8b mutant animals show increased thigmotaxis behavior, suggesting an anxiety-like phenotype. We anticipate that our two novel metabotropic glutamate receptor 8 zebrafish models may contribute to a deeper understanding of its function in normal development and its role in the pathomechanism of disorders of the central nervous system. KW - nervous system KW - brain disorders KW - psychiatric disorders KW - brain development KW - excitatory/inhibitory imbalance KW - metabotropic glutamate (mGlu) receptor Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-277429 SN - 1662-5099 VL - 15 ER - TY - JOUR A1 - Lechermeier, Carina G. A1 - Zimmer, Frederic A1 - Lüffe, Teresa M. A1 - Lesch, Klaus-Peter A1 - Romanos, Marcel A1 - Lillesaar, Christina A1 - Drepper, Carsten T1 - Transcript analysis of zebrafish GLUT3 genes, slc2a3a and slc2a3b, define overlapping as well as distinct expression domains in the zebrafish (Danio rerio) central nervous system JF - Frontiers in Molecular Neuroscience N2 - The transport of glucose across the cell plasma membrane is vital to most mammalian cells. The glucose transporter (GLUT; also called SLC2A) family of transmembrane solute carriers is responsible for this function in vivo. GLUT proteins encompass 14 different isoforms in humans with different cell type-specific expression patterns and activities. Central to glucose utilization and delivery in the brain is the neuronally expressed GLUT3. Recent research has shown an involvement of GLUT3 genetic variation or altered expression in several different brain disorders, including Huntington’s and Alzheimer’s diseases. Furthermore, GLUT3 was identified as a potential risk gene for multiple psychiatric disorders. To study the role of GLUT3 in brain function and disease a more detailed knowledge of its expression in model organisms is needed. Zebrafish (Danio rerio) has in recent years gained popularity as a model organism for brain research and is now well-established for modeling psychiatric disorders. Here, we have analyzed the sequence of GLUT3 orthologs and identified two paralogous genes in the zebrafish, slc2a3a and slc2a3b. Interestingly, the Glut3b protein sequence contains a unique stretch of amino acids, which may be important for functional regulation. The slc2a3a transcript is detectable in the central nervous system including distinct cellular populations in telencephalon, diencephalon, mesencephalon and rhombencephalon at embryonic and larval stages. Conversely, the slc2a3b transcript shows a rather diffuse expression pattern at different embryonic stages and brain regions. Expression of slc2a3a is maintained in the adult brain and is found in the telencephalon, diencephalon, mesencephalon, cerebellum and medulla oblongata. The slc2a3b transcripts are present in overlapping as well as distinct regions compared to slc2a3a. Double in situ hybridizations were used to demonstrate that slc2a3a is expressed by some GABAergic neurons at embryonic stages. This detailed description of zebrafish slc2a3a and slc2a3b expression at developmental and adult stages paves the way for further investigations of normal GLUT3 function and its role in brain disorders. KW - glucose transporter KW - nervous system KW - brain disorders KW - psychiatric disorders KW - brain development KW - GABA KW - GAD1 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201797 VL - 12 IS - 199 ER - TY - THES A1 - Hartlieb, Heiko T1 - Functional analysis of Mushroom body miniature’s RGG-box and its role in neuroblast proliferation in Drosophila melanogaster T1 - Funktionelle Analyse der RGG-Box von Mushroom body miniature und deren Rolle in der Neuroblastenproliferation in Drosophila melanogaster N2 - Development of the central nervous system in Drosophila melanogaster relies on neural stem cells called neuroblasts. Neuroblasts divide asymmetrically to give rise to a new neuroblast as well as a small daughter cell which eventually generates neurons or glia cells. Between each division, neuroblasts have to re-grow to be able to divide again. In previous studies, it was shown that neuroblast proliferation, cell size and the number of progeny cells is negatively affected in larvae carrying a P-element induced disruption of the gene mushroom body miniature (mbm). This mbm null mutation called mbmSH1819 is homozygously lethal during pupation. It was furthermore shown that the nucleolar protein Mbm plays a role in the processing of ribosomal RNA (rRNA) as well as the translocation of ribosomal protein S6 (RpS6) in neuroblasts and that it is a transcriptional target of Myc. Therefore, it was suggested that Mbm might regulate neuroblast proliferation through a role in ribosome biogenesis. In the present study, it was attempted to further elucidate these proposed roles of Mbm and to identify the protein domains that are important for those functions. Mbm contains an arginine/glycine rich region in which a di-RG as well as a di-RGG motif could be found. Together, these two motifs were defined as Mbm’s RGG-box. RGG-boxes can be found in many proteins of different families and they can either promote or inhibit protein-RNA as well as protein-protein interactions. Therefore, Mbm’s RGG-box is a likely candidate for a domain involved in rRNA binding and RpS6 translocation. It could be shown by deletion of the RGG-box, that MbmdRGG is unable to fully rescue survivability and neuroblast cell size defects of the null mutation mbmSH1819. Furthermore, Mbm does indeed rely on its RGG-box for the binding of rRNA in vitro and in mbmdRGG as well as mbmSH1819 mutants RpS6 is partially delocalized. Mbm itself also seems to depend on the RGG-box for correct localization since MbmdRGG is partially delocalized to the nucleus. Interestingly, protein synthesis rates are increased in mbmdRGG mutants, possibly induced by an increase in TOR expression. Therefore, Mbm might possess a promoting function in TOR signaling in certain conditions, which is regulated by its RGG-box. Moreover, RGG-boxes often rely on methylation by protein arginine methyltransferases (in Drosophila: Darts – Drosophila arginine methyltransferases) to fulfill their functions. Mbm might be symmetrically dimethylated within its RGG-box, but the results are very equivocal. In any case, Dart1 and Dart5 do not seem to be capable of Mbm methylation. Additionally, Mbm contains two C2HC type zinc-finger motifs, which could be involved in rRNA binding. In an earlier study, it was shown that the mutation of the zinc-fingers, mbmZnF, does not lead to changes in neuroblast cell size, but that MbmZnF is delocalized to the cytoplasm. In the present study, mbmZnF mutants were included in most experiments. The results, however, are puzzling since mbmZnF mutant larvae exhibit an even lower viability than the mbm null mutants and MbmZnF shows stronger binding to rRNA than wild-type Mbm. This suggests an unspecific interaction of MbmZnF with either another protein, DNA or RNA, possibly leading to a dominant negative effect by disturbing other interaction partners. Therefore, it is difficult to draw conclusions about the zinc-fingers’ functions. In summary, this study provides further evidence that Mbm is involved in neuroblast proliferation as well as the regulation of ribosome biogenesis and that Mbm relies on its RGG-box to fulfill its functions. N2 - Die Entwicklung des zentralen Nervensystems von Drosophila melanogaster beruht auf neuronalen Stammzellen genannt Neuroblasten. Neuroblasten teilen sich asymmetrisch und bringen dabei sowohl einen neuen Neuroblasten als auch eine kleinere Tochterzelle hervor, die wiederum letztlich Neuronen oder Gliazellen generiert. Zwischen jeder Zellteilung müssen die Neuroblasten wieder auf ihre ursprüngliche Größe wachsen, sodass sie zur erneuten Teilung in der Lage sind. In vorhergehenden Studien konnte gezeigt werden, dass sowohl die Proliferation der Neuroblasten, deren Zellgröße als auch die Anzahl ihrer Tocherzellen reduziert ist in Larven, die eine P-Element-induzierte Unterbrechung des Gens mushroom body miniature (mbm) tragen. Diese mbm-Nullmutation, genannt mbmSH1819, ist homozygot letal während des Puppenstadiums. Es konnte außerdem gezeigt werden, dass das nucleoläre Protein Mbm eine Rolle in der Prozessierung ribosomaler RNA (rRNA), sowie der Translokation des ribosomalen Proteins S6 (RpS6) in Neuroblasten erfüllt und dass seine Transkription durch Myc reguliert wird. Daher wurde geschlussfolgert, dass Mbm die Proliferation von Neuroblasten durch eine Funktion in der Ribosomenbiogenese regulieren könnte. In der vorliegenden Studie wurde das Ziel verfolgt, weitere Hinweise auf diese möglichen Funktionen von Mbm zu finden und die Proteindomänen zu identifizieren, die dafür benötigt werden. Mbm beinhaltet einen Arginin/Glycin-reichen Abschnitt, der ein di-RG sowie ein di-RGG Motiv enthält. Diese beiden Motive wurden zusammen zu Mbms RGG-Box definiert. RGG-Boxen finden sich in vielen Proteinen verschiedener Familien und sie können sich sowohl verstärkend als auch inhibierend auf Protein-RNA- sowie Protein-Protein-Interaktionen auswirken. Somit stellt Mbms RGG-Box einen vielversprechenden Kandidaten dar für eine Proteindomäne, die in die rRNA-Bindung sowie die Translokation von RpS6 involviert ist. Es konnte gezeigt werden, dass Mbm mit deletierter RGG-Box (MbmdRGG) nicht in der Lage ist, die Überlebensfähigkeit und die Neuroblastengröße der Nullmutation mbmSH1819 vollständig zu retten. Des Weiteren benötigt Mbm die RGG-Box, um rRNA in vitro zu binden und in mbmdRGG sowie mbmSH1819 Mutanten konnte eine partielle Delokalisation von RpS6 beobachtet werden. Die korrekte Lokalisation von Mbm selbst scheint auch von der RGG-Box abzuhängen, da MbmdRGG teilweise in den Nukleus delokalisiert ist. Interessanterweise ist außerdem die Proteinsyntheserate in mbmdRGG Mutanten erhöht, was möglicherweise in einer Erhöhung der TOR-Expression begründet ist. Somit könnte Mbm unter bestimmten Bedingungen eine verstärkende Funktion im TOR-Signalweg erfüllen, die durch seine eigene RGG-Box reguliert wird. Des Weiteren sind RGG-Boxen hinsichtlich ihrer Funktion häufig von der Methylierung durch Protein-Arginin-Methyltransferasen (in Drosophila: Darts – Drosophila arginine methyltransferases) abhängig. Mbm könnte innerhalb seiner RGG-Box symmetrisch dimethyliert sein, allerdings sind die Ergebnisse in dieser Hinsicht sehr zweifelhaft. Jedenfalls scheinen Dart1 und Dart5 nicht imstande zu sein, Mbm zu methylieren. Außerdem beinhaltet Mbm zwei Zink-Finger-Motive des C2HC-Typs, die in die Bindung von rRNA involviert sein könnten. Eine vorhergehende Studie konnte zeigen, dass die Mutation der Zink-Finger, mbmZnF, zwar nicht zu einer Veränderung der Neuroblastengröße führt, allerdings, dass MbmZnF ins Zytoplasma delokalisiert vorliegt. In der vorliegenden Studie wurden die mbmZnF Mutanten in die meisten Experimente mit einbezogen. Allerdings sind die Ergebnisse rätselhaft, da mbmZnF-mutierte Larven sogar eine geringere Überlebensrate zeigen als die mbm Nullmutanten und da MbmZnF eine stärkere Bindungsaffinität zu rRNA zeigt als wildtypisches Mbm. Dies weist auf eine unspezifische Interaktion zwischen MbmZnF und einem anderen Protein, RNA oder DNA hin, was einen dominant-negativen Effekt auslösen könnte, indem andere Interaktionspartner gestört werden. Somit gestaltet es sich schwierig, Schlussfolgerungen zur Funktion der Zink-Finger zu ziehen. Zusammengefasst liefert die vorliegende Studie weitere Anhaltspunkte, dass Mbm in der Neuroblastenproliferation sowie der Regulation der Ribosomenbiogenese involviert ist und dass Mbm seine RGG-Box benötigt, um seine Funktionen zu erfüllen. KW - Taufliege KW - Neuroblast KW - Gehirn KW - Entwicklung KW - Drosophila melanogaster KW - brain development KW - neuroblast proliferation KW - mushroom body miniature KW - Gehirnentwicklung KW - Neuroblastenproliferation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199674 ER - TY - JOUR A1 - Fauser, Mareike A1 - Weselek, Grit A1 - Hauptmann, Christine A1 - Markert, Franz A1 - Gerlach, Manfred A1 - Hermann, Andreas A1 - Storch, Alexander T1 - Catecholaminergic Innervation of Periventricular Neurogenic Regions of the Developing Mouse Brain JF - Frontiers in Neuroanatomy N2 - The major catecholamines—dopamine (DA) and norepinephrine (NE)—are not only involved in synaptic communication but also act as important trophic factors and might ultimately be involved in mammalian brain development. The catecholaminergic innervation of neurogenic regions of the developing brain and its putative relationship to neurogenesis is thus of pivotal interest. We here determined DA and NE innervation around the ventricular/subventricular zone (VZ/SVZ) bordering the whole ventricular system of the developing mouse brain from embryonic day 14.5 (E14.5), E16.5, and E19.5 until postnatal day zero (P0) by histological evaluation and HPLC with electrochemical detection. We correlated these data with the proliferation capacity of the respective regions by quantification of MCM\(^{2+}\) cells. During development, VZ/SVZ catecholamine levels dramatically increased between E16.5 and P0 with DA levels increasing in forebrain VZ/SVZ bordering the lateral ventricles and NE levels raising in midbrain/hindbrain VZ/SVZ bordering the third ventricle, the aqueduct, and the fourth ventricle. Conversely, proliferating MCM\(^{2+}\) cell counts dropped between E16.5 and E19.5 with a special focus on all VZ/SVZs outside the lateral ventricles. We detected an inverse strong negative correlation of the proliferation capacity in the periventricular neurogenic regions (log-transformed MCM\(^{2+}\) cell counts) with their NE levels (r = −0.932; p < 0.001), but not their DA levels (r = 0.440; p = 0.051) suggesting putative inhibitory effects of NE on cell proliferation within the periventricular regions during mouse brain development. Our data provide the first framework for further demandable studies on the functional importance of catecholamines, particularly NE, in regulating neural stem/progenitor cell proliferation and differentiation during mammalian brain development. KW - brain development KW - ventricular zone KW - catecholamines KW - norepinephrine KW - dopamine KW - neurogenesis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-212485 VL - 14 ER - TY - JOUR A1 - Ahmad, Ruhel A1 - Wolber, Wanja A1 - Eckardt, Sigrid A1 - Koch, Philipp A1 - Schmitt, Jessica A1 - Semechkin, Ruslan A1 - Geis, Christian A1 - Heckmann, Manfred A1 - Brüstle, Oliver A1 - McLaughlin, John K. A1 - Sirén, Anna-Leena A1 - Müller, Albrecht M. T1 - Functional Neuronal Cells Generated by Human Parthenogenetic Stem Cells JF - PLoS One N2 - Parent of origin imprints on the genome have been implicated in the regulation of neural cell type differentiation. The ability of human parthenogenetic (PG) embryonic stem cells (hpESCs) to undergo neural lineage and cell type-specific differentiation is undefined. We determined the potential of hpESCs to differentiate into various neural subtypes. Concurrently, we examined DNA methylation and expression status of imprinted genes. Under culture conditions promoting neural differentiation, hpESC-derived neural stem cells (hpNSCs) gave rise to glia and neuron-like cells that expressed subtype-specific markers and generated action potentials. Analysis of imprinting in hpESCs and in hpNSCs revealed that maternal-specific gene expression patterns and imprinting marks were generally maintained in PG cells upon differentiation. Our results demonstrate that despite the lack of a paternal genome, hpESCs generate proliferating NSCs that are capable of differentiation into physiologically functional neuron-like cells and maintain allele-specific expression of imprinted genes. Thus, hpESCs can serve as a model to study the role of maternal and paternal genomes in neural development and to better understand imprinting-associated brain diseases. KW - methylation KW - derivation KW - blastocysts KW - pluripotent KW - differentiation KW - lines KW - brain development KW - in-vitro KW - mice KW - specification Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130268 VL - 7 IS - 8 ER -