TY - JOUR A1 - Worku, Netsanet A1 - Stich, August A1 - Daugschies, Arwid A1 - Wenzel, Iris A1 - Kurz, Randy A1 - Thieme, Rene A1 - Kurz, Susanne A1 - Birkenmeier, Gerd T1 - Ethyl Pyruvate Emerges as a Safe and Fast Acting Agent against Trypanosoma brucei by Targeting Pyruvate Kinase Activity JF - PLoS ONE N2 - Background Human African Trypanosomiasis (HAT) also called sleeping sickness is an infectious disease in humans caused by an extracellular protozoan parasite. The disease, if left untreated, results in 100% mortality. Currently available drugs are full of severe drawbacks and fail to escape the fast development of trypanosoma resistance. Due to similarities in cell metabolism between cancerous tumors and trypanosoma cells, some of the current registered drugs against HAT have also been tested in cancer chemotherapy. Here we demonstrate for the first time that the simple ester, ethyl pyruvate, comprises such properties. Results The current study covers the efficacy and corresponding target evaluation of ethyl pyruvate on T. brucei cell lines using a combination of biochemical techniques including cell proliferation assays, enzyme kinetics, phasecontrast microscopic video imaging and ex vivo toxicity tests. We have shown that ethyl pyruvate effectively kills trypanosomes most probably by net ATP depletion through inhibition of pyruvate kinase (Ki = 3.0\(\pm\)0.29 mM). The potential of ethyl pyruvate as a trypanocidal compound is also strengthened by its fast acting property, killing cells within three hours post exposure. This has been demonstrated using video imaging of live cells as well as concentration and time dependency experiments. Most importantly, ethyl pyruvate produces minimal side effects in human red cells and is known to easily cross the blood-brain-barrier. This makes it a promising candidate for effective treatment of the two clinical stages of sleeping sickness. Trypanosome drug-resistance tests indicate irreversible cell death and a low incidence of resistance development under experimental conditions. Conclusion Our results present ethyl pyruvate as a safe and fast acting trypanocidal compound and show that it inhibits the enzyme pyruvate kinase. Competitive inhibition of this enzyme was found to cause ATP depletion and cell death. Due to its ability to easily cross the blood-brain-barrier, ethyl pyruvate could be considered as new candidate agent to treat the hemo-lymphatic as well as neurological stages of sleeping sickness. KW - human african trypanosomiasis KW - glycolysis KW - transport KW - protein KW - cruzi KW - chemotherapy KW - metabolism KW - in vitro KW - drugs KW - sleeping sickness Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-150002 VL - 10 IS - 9 ER - TY - JOUR A1 - Pfeiffer-Guglielmi, Brigitte A1 - Dombert, Benjamin A1 - Jablonka, Sibylle A1 - Hausherr, Vanessa A1 - van Thriel, Christoph A1 - Schobel, Nicole A1 - Jansen, Ralf-Peter T1 - Axonal and dendritic localization of mRNAs for glycogen-metabolizing enzymes in cultured rodent neurons JF - BMC Neuroscience N2 - Background: Localization of mRNAs encoding cytoskeletal or signaling proteins to neuronal processes is known to contribute to axon growth, synaptic differentiation and plasticity. In addition, a still increasing spectrum of mRNAs has been demonstrated to be localized under different conditions and developing stages thus reflecting a highly regulated mechanism and a role of mRNA localization in a broad range of cellular processes. Results: Applying fluorescence in-situ-hybridization with specific riboprobes on cultured neurons and nervous tissue sections, we investigated whether the mRNAs for two metabolic enzymes, namely glycogen synthase (GS) and glycogen phosphorylase (GP), the key enzymes of glycogen metabolism, may also be targeted to neuronal processes. If it were so, this might contribute to clarify the so far enigmatic role of neuronal glycogen. We found that the mRNAs for both enzymes are localized to axonal and dendritic processes in cultured lumbar spinal motoneurons, but not in cultured trigeminal neurons. In cultured cortical neurons which do not store glycogen but nevertheless express glycogen synthase, the GS mRNA is also subject to axonal and dendritic localization. In spinal motoneurons and trigeminal neurons in situ, however, the mRNAs could only be demonstrated in the neuronal somata but not in the nerves. Conclusions: We could demonstrate that the mRNAs for major enzymes of neural energy metabolism can be localized to neuronal processes. The heterogeneous pattern of mRNA localization in different culture types and developmental stages stresses that mRNA localization is a versatile mechanism for the fine-tuning of cellular events. Our findings suggest that mRNA localization for enzymes of glycogen metabolism could allow adaptation to spatial and temporal energy demands in neuronal events like growth, repair and synaptic transmission. KW - glycogen phosphorylase KW - neuronal primary culture KW - energy metabolism KW - nervous system KW - phosphorylase isozymes KW - brain KW - transport KW - protein synthesis KW - glycolysis KW - roles KW - synthase KW - antibodies KW - immunocytochemical analysis KW - glycogen synthase KW - mRNA localization KW - fluorescence in-situ hybridization Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116049 SN - 1471-2202 VL - 15 IS - 70 ER - TY - JOUR A1 - König, Markus A1 - Baenninger, Matthias A1 - Garcia, Andrei G. F. A1 - Harjee, Nahid A1 - Pruitt, Beth L. A1 - Ames, C. A1 - Leubner, Philipp A1 - Brüne, Christoph A1 - Buhmann, Hartmut A1 - Molenkamp, Laurens W. A1 - Goldhaber-Gordon, David T1 - Spatially Resolved Study of Backscattering in the Quantum Spin Hall State JF - Physical Review X N2 - The discovery of the quantum spin Hall (QSH) state, and topological insulators in general, has sparked strong experimental efforts. Transport studies of the quantum spin Hall state have confirmed the presence of edge states, showed ballistic edge transport in micron-sized samples, and demonstrated the spin polarization of the helical edge states. While these experiments have confirmed the broad theoretical model, the properties of the QSH edge states have not yet been investigated on a local scale. Using scanning gate microscopy to perturb the QSH edge states on a submicron scale, we identify well-localized scattering sites which likely limit the expected nondissipative transport in the helical edge channels. In the micron-sized regions between the scattering sites, the edge states appear to propagate unperturbed, as expected for an ideal QSH system, and are found to be robust against weak induced potential fluctuations. KW - mesoscopics KW - topological insulators KW - transport KW - charge KW - wells KW - branched flow KW - nanostructures Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127225 SN - 2160-3308 VL - 3 IS - 2 ER - TY - JOUR A1 - Güntzel, Paul A1 - Schilling, Klaus A1 - Hanio, Simon A1 - Schlauersbach, Jonas A1 - Schollmayer, Curd A1 - Meinel, Lorenz A1 - Holzgrabe, Ulrike T1 - Bioinspired Ion Pairs Transforming Papaverine into a Protic Ionic Liquid and Salts JF - ACS Omega N2 - Microbial, mammalian, and plant cells produce and contain secondary metabolites, which typically are soluble in water to prevent cell damage by crystallization. The formation of ion pairs, for example, with carboxylic acids or mineral acids, is a natural blueprint to maintain basic metabolites in solution. Here, we aim at showing whether the mostly large carboxylates form soluble protic ionic liquids (PILs) with the basic natural product papaverine resulting in enhanced aqueous solubility. The obtained PILs were characterized by H-1-N-15 HMBC nuclear magnetic resonance (NMR) and in the solid state using X-ray powder diffraction, differential scanning calorimetry, and dissolution measurements. Furthermore, their supramolecular pattern in aqueous solution was studied by means of potentiometric and photometrical solubility, NMR aggregation assay, dynamic light scattering, zeta potential, and viscosity measurements. Thereby, we identified the naturally occurring carboxylic acids, citric acid, malic acid, and tartaric acid, as being appropriate counterions for papaverine and which will facilitate the formation of PILs with their beneficial characteristics, like the improved dissolution rate and enhanced apparent solubility. KW - solubility KW - transport KW - strategy KW - drugs KW - forms KW - acids Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230265 VL - 5 IS - 30 ER -